(MASA-CR=1474145) CONTINUATIL 18 OF 7 58A20H N7Z-11652

INTO LANGUASS CONTIPTS € TriT 4153

SUPPIORT ENVIRONMENT Final Rasort (Southuwest

Fesaarcn Inst,) 31345 n C30L o4 Uncltas
33/61 0033010

CONTINUATION OF RESEARCH

INTO LANGUAGE CONCEPTS FOR
THE MISSION SUPPORT ENVIRONMENT

FINAL REPORT

NASA Grant No. NAG 9-435
SwRI Project No. 05-3531

Prepared for:

NASA
Johnson Space Center
Houston, TX 77058

September 5, 1991

SOUTHWEST RESEARCH INSTITUTE

SAN ANTONIO HOUSTON
DETROIT WASHINGTON,DC

-

SOUTHWEST RESEARCH INSTITUTE

6220 CULEBRA ROAD * POST OFFICE DRAWER 28510 * SAN ANTONIO, TEXAS, USA 78228-0510 * (512)684-5111 ¢ TELEX 244846

September 10, 1991

Ms. Maryland Edwards
NASA-Johnson Space Center
Building 12, DJ23
Houston, Texas 77058

Subject: Delivery of Final Report for the Continuation of Research Into
Language Concepts; NASA Grant No. NAG9-435; SwRI Project 05-3531

Dear Ms. Edwards,

Enclosed is the final report for the Continuation of Research Into
Language Concepts research grant, NASA Grant 9-435. The final report
contains a summary of the efforts performed on the grant. The final
report contains the following sections:

A general description of the efforts performed on the grant is
contained in the first section of the final report. This section

Several documents which were generated on the grant are included in
the middle sections of the final report. The Graphical Comp Builder
Prototype documents and the Ada investigation documents are included.

A copy of the source code of the MOTIF version of the Graphical Comp
Builder Prototype is included in the last section of the final

If you have any questions or comments, please feel free to call Tim
Barton at (512) 522-3540, or Dr. Steven W. Dellenback at (512) 522-3914.

Sincerely,

Melvin A. Schrader
Director
Data Systems Department

TJB:ve

Enclosures

cc: Susan B. Crumrinex&sc
Timothy J. Barton

Steven W. Dellenback
NASA Scientific and Information Facility (2 copies)

SAN ANTONIO, TEXAS

HOUSTON. TEXAS o DETROIT, MICHIGAN = WASHINGTON, DC

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 6220 Culebra Road
San Antonio, Texas 78228-0510

CONTINUATION OF RESEARCH
INTO LANGUAGE CONCEPTS FOR
THE MISSION SUPPORT ENVIRONMENT

FINAL REPORT

NASA Grant No. NAG 9-435
SwRI Project No. 05-3531

Prepared by:

Timothy J. Barton
Jeremiah M. Ratner

Prepared for:

NASA
Johnson Space Center
Houston, TX 77058

September 5, 1991

Approved:

ibrin BBt

Melvin A. Schrader, Director
Data Systems Department

h

Table of Contents

1.0 INEFOQUCLION uccuucuecrcscsssnenensssecnnsessssesssassssenssssssssesnsonsossssssssssssssasensenssssessssssons 1
2.0 Graphical Comp Environment CONCEPLSeeeereeseersensenseesessssssesessessosesennn 2
2.1 Graphical Comp Builder Prototype Specificationsooceeeesresreesososooooosooooon. 2
2.1.1 Graphically Represented COMPScovevumeeoreeseeesssresseeseesos s 2

2.1.2 Graphical USEr INEITACEeevuevurrrenereeeeereeeessease e seesesseesssessssoess e s 3

2.1.3 MOAL LANGUAEEc.currrrrerrenrrniersasrsieessessseneesesessessssesseessessesss s 3

3.0 Graphical Comp Builder Prototype Developmentu.eeeeveeeoeeooveenonnn 4
3.1 Graphical Comp Builder Prototype DOCUMENTALONceeveerreerereeeoe oo 4

4.0 Investigation of Ada for Control Center SOftWATe «.....v.eeeeeeeeeeeeooeoeoosesesoos 6
4.1 Ada INVESHZALION ...vuuceeenrerrnrersieeseieeeceeeeseeeeeseeeseeeeeseeseees s e e eee oo e eeeee 6

4.2 Investigation and Comparison of Ada and C........co.eeveeeemoooooeoooooeoeooeoooeooooooooooe 6

5.0 Appendix A - Graphical Comp Environment Design Specifications
6.0 Appendix B - Graphical Comp Builder Prototype Documentation
7.0 Appendix C - Ada Investigation

8.0 Appendix D - Comparison of C and Ada Programming Languages
9.0 Appendix E - Hartstone Benchmark Results

10.0 Appendix F - Graphical Comp Builder Prototype Source Code

——————— .]
Page i Final Report

o .

Introduction
\

1.0 Introduction

Southwest Research Institute (SWRI) was awarded a grant by NASA-Johnson Space Center JSC)
to perform research in the area of Specification Driven Languages (NASA Grant NAG 9-339). The
purpose of the research was to investigate alternative programming techniques/concepts which
could be utilized in control center software development environments. At the conclusion of the
Specification Driven Language Grant, a follow on grant (NASA Grant NAG 9-435) was awarded
to further pursue Specification Driven Languages and to prototype the concepts investigated during
the previous grant.

This final report is a summary of the work completed under the follow on grant. In summary, the
grant has focused on the following areas of research:

. A concept for a more intuitive and graphically based Computation (Comp) Builder was
developed. This concept is the result of knowledge gained during the previous grant and
research performed on the current grant. This concept is described in a document
entitled *“Graphical Comp Environment Concepts and Prototype Design
Specifications” and is contained in Appendix A.

. The Graphical Comp Builder Prototype was developed to demonstrate the concepts
which were researched during the early phases of this grant. The Graphical Comp
Builder Prototype is an X Windows based graphical tool which allows the user to build
Comps using graphical symbols. The prototype allowed NASA users to become
familiar with the new concepts and allowed the research team to gain feedback on the
viability of the new concepts.

. Investigation has been conducted to determine the availability and suitability of the Ada
programming language for the development of future contro] center type software. The
Space Station Freedom Project (SSFP) has identified Ada as the desired programmin g
language for the development of Space Station Control Center (8SCOC) software
systems. The Department of Defense (DoD) has mandated Ada as the programming
language for all new DoD software. Due to these mandates and related directions within
private industry, an investigation of Ada was necessary.

The results of the research areas described above are contained in the following sections and
appendices of this final report.

4\

Page 1 Final Report

Graphical Comp Concepts

s E——

2.0 Graphical Comp Environment Concepts

One of the main goals of the research grant was the development of concepts for a more graphical
means to represent comps. Most comps are constructed from engineering diagrams and flow charts
which describe the system to be monitored. These engineering diagrams and flow charts are very
graphical in nature. Using existing control center software, these engineering diagrams and flow
charts must be manually converted into textual algorithms. These textual algorithms are then
manually entered into the comp builder software.

A concept of a software system was developed as part of this research grant which would allow
comps to be entered into the comp builder software in a manner which more closely matches the
engineering diagrams and flow charts used to describe the systems. This allows comps to be
constructed in a more natural and direct fashion, and more accurately due to the removal of the
manual conversion from a graphical representation to a textual representation. The Graphical
Comp Environment Concepts and Prototype Design Specifications are included as Appendix A of
this final report. The Graphical Comp Environment Concepts and Prototype Design Specifications
contain a concept for a Comp development, maintenance, and operations environment which is
more graphically based than existing textually based environments.

A prototype demonstration of portions of the Graphical Comp Environment Concepts has been
completed. The Graphical Comp Builder portion of the Graphical Comp Environment has been
prototyped and demonstrated to NASA. The Graphical Comp Builder portion of the concept
determines how the formally textual comps will be graphical represented. The Graphical Comp
Builder portion of the environment is also the least dependent on the facilities provided by the
underlying hardware and operating system software. The Graphical Comp Execution Environment
is very dependent on the underlying hardware and operating system software, so this portion of the
concept was not prototyped.

2.1 Graphical Comp Builder Prototype Specifications

The Graphical Comp Builder Prototype Specifications were developed to guide the development
of the demonstration prototype. The knowledge gained on the prior grant during the review of the
Computation Development Environment (CODE) influenced the development of the Graphical
Comp Builder Prototype Specifications. This knowledge was used to ensure that the specifications
identify a software system that is relevant and applicable to a control center environment.

The concepts demonstrated by the Graphical Comp Builder Prototype are a departure from the
textually represented comps. The initial phase of the research grant included an investigation into
the various methods available to graphically represent information similar in nature to the data
contained in the engineering diagrams and flow charts used at NASA.

2.1.1 Graphically Represented Comps

A portion of the research performed on the grant has been in the area of graphically representing
data. Numerous software packages were investigated to determine the currently available
strategies for representing data similar to the engineering diagrams and flow charts used by control
center personnel. Each software package was installed at SwRI and exercised for several days so
a thorough understanding of the mechanisms used to graphically represent data could be assessed.
Once the package had been exercised and evaluated, a review of the graphical representation
mechanisms was developed.

Page 2 Final Report

Graphical Comp Concepts

software packages ranged from very complex and expensive UNIX work station software, to
inexpensive IBM PC programs. These software packages were often very different in nature and
function, but all utilized a graphical means to represent data. Some of the packages investigated
included:

. flow chart generation packages

. microwave circuitry design/simulation packages

. schematic design/drawing packages

. PC board layout packages

. graphics drawing packages

Each package was thorou ghly investigated and a review of each package was developed. Packages
which stood out from the others, either because of their effectiveness in representin g graphical data
or because of their gross ineffectiveness, were identified. These packages were demonstrated to
NASA during a visit to SWRI on August 3, 1990.

2.1.2 Graphical User Interface

Graphical Comp Builder Prototype Specifications auempted to ensure that an intuitive and
efficient user interface was specified.

The review of the various software packages, performed to identify graphical representation
strategies, also provided information into the effective use of a GUI and the mechanisms of each
GUI which would benefit the Graphical Comp Builder Prototype. The strengths and weaknesses
of each package were recorded so the most desirable features of each package could be specified
for use in the Graphical Comp Builder Prototype if appropriate.

The various elements of the GUI utilized by the various software packages were also demonstrated
to NASA during the August 3, 1990, visit to SwRI.

2.1.3 MOAL Language

\
‘\

Page 3 Final Report

Prototype Development

T S

3.0 Graphical Comp Builder Prototype Development

As stated previously, the goal of the research grant was to investigate language concepts and
implementation strategies which could be used to improve control center computation
development and execution environments. The Graphical Comp Environment Concepts and
Prototype Design Specifications were developed to identify the technologies to use to improve
comp environments. Once the Graphical Comp Builder Prototype concepts were formulated,
implementation of the Graphical Comp Builder Prototype was begun.

The Graphical Comp Builder Prototype is a user friendly tool which allows flight controllers or
other users to graphically represent comps. The Graphical Comp Builder Prototype’s graphical
representation of a comp is very similar to the engineering diagrams and flow charts used to
describe the systems being monitored in control center environments. The development of the
Graphical Comp Builder Prototype utilized the technologies identified in the Graphical Comp
Builder portion of the Graphical Comp Environment Concepts and Prototype Design
Specifications.

The Graphical Comp Builder Prototype was developed in the C language on UNIX-based Sun
workstations. The first version of the Graphical Comp Builder Prototype used the C language
XView toolkit implementation of the OpenLook GUL A partially completed OpenLook version of
the Graphical Comp Builder Prototype was demonstrated to NASA on two occasions. Once
experience had been gained with the XView toolkit and the capabilities of the XView toolkit had
been assessed, the Prototype was ported to the MOTIF GUL The Graphical Comp Builder
Prototype was completed using the MOTIF GUL The MOTIF and OpenLook GUT’s are currently
competing to become the industry standard. The research team was able to assess the strengths and
weaknesses of both GUT’s during the development of the Graphical Comp Builder Prototype.

The MOTIF version of the Graphical Comp Builder Prototype has been completed and
demonstrated to NASA-JSC. A complete listing of the C language source code for the MOTIF
version of the Graphical Comp Builder Prototype is included in Appendix F of this final report.

3.1 Graphical Comp Builder Prototype Documentation

A discussion of the implementation of the MOTIF version of the Graphical Comp Builder
Prototype is contained in the Graphical Comp Builder Prototype Documentation. The Graphical

Comp Builder Prototype Documentation was developed to provide information about the
following aspects of the Graphical Comp Builder Prototype:

. The major concepts of the Graphical Comp Builder Prototype are identified and their
implementation within the Prototype are discussed in the first section of the Graphical
Comp Builder Prototype Documentation. This section discusses the graphical nature of
the Prototype and also discusses the Comp hierarchy, report generation, and automatic
code generation features of the Graphical Comp Builder Prototype.

. A more complete list of the various features contained within the Graphical Comp
Builder Prototype are contained in the second section of the Graphical Comp Builder
Prototype Documentation.

. The third section of the Graphical Comp Builder Prototype Documentation contains a
brief discussion of the implementation of the Prototype. This section identifies the
module hierarchy, data files, and data structures of the Graphical Comp Builder
Prototype.

Page 4 Final Report

Page 5

Final Report

Investigation of Ada

/

4.0 Investigation of Ada for Control Center Software

As mentioned in the Introduction, NASA has selected Ada to be used in the development of any
new software for SSCC and the DoD has mandated Ada as the programming language for any new
DoD software. Therefore, a preliminary investigation into an Ada version of the Graphical Comp
Builder was conducted. Initial investigation into Ada’s acceptance at NASA and the performance
of a program written in Ada are the two areas of investigation to date.

4.1 Ada Investigation

The first step in the investigation into Ada was to determine Ada’s acceptance and usage. A
member of the research team attended the Third Annual NASA Ada User’s Symposium to
determine Ada’s acceptance within the NASA community. A summary of the information gathered
at the NASA Ada User’s Symposium is contained in Appendix C.

The second step in the investigation of Ada focused on the relative performance of Ada programs
on two workstations often used in control center environments. The Hartstone Benchmark was
used to provided information regarding the performance of the executables produced by various
Ada compilers. A summary of the findings from the Hartstone Benchmark investigation is also
contained in Appendix C.

4.2 Investigation and Comparison of Adaand C

NASA is about to embark on the development of millions of lines of software for the SSCC and
the Space Station Training Facility (SSTF). Most of the programs written for JSC have been
written in the C or FORTRAN programming languages during the last 5 years. NASA had
originally specified the use of Ada in the development of the SSCC and SSTF software, but in
recent years Ada’s acceptance has seemed to dwindle while the acceptance of the C programming
language has accelerated rapidly. To investigate this further, SWRI performed a comparison of the
C and Ada programming languages for control center environments. The results of the
investigation were presented to NASA-JSC on March 8, 1991. A copy of the results of the
investigation are contained in Appendix D of this final report.

f #4_

Page 6 Final Report

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 285 10, 6220 Culebra Road
San Antonio, Texas 78228-0510

GRAPHICAL COMP ENVIRONMENT
CONCEPTS AND PROTOTYPE
DESIGN SPECIFICATIONS

NASA Grant No. NAG 9-435
SwRI Project No. 05-3531

Prepared by:
Timothy J. Barton
Jeremiah M. Ratner

Prepared for:
NASA
Johnson Space Center
Houston TX 77058

January 28, 1991

Approved:
o AP,

Melvin A. Schrader, Director
Data Systems Department

- _

\

Table of Contents

1.0 Purpose 1
2.0 Graphical Comp Builder Prototype Specifications 2
2.1 GCB Feature SPECifiCationscceweeeeremeneesseeeeererersoreeeessssosoeooooesoeo 3
2.1.1 Graphical Interfaceooersernnennnn., 3
2.1.2 MOAL SUPPOTE .cccourrrrnnnrrennnescseesesssnenssssessessssssessmmsmssssssss s 3
2.1.3 REPOIT GENCTRUOM cvccvverseerrmsescomneessssenssssesoemesesessses e ss s 3
2.1.4 Graphical Representation of Logical Expressionsccoouurevereoeeeoenrren. 3
2.1.5 Comp EXCCUter/DEDUEEEToeeeerereeeceeereeeeee oo 4

216 LIBIAIY wovveeoeessecomnresnnss s sssesssssssssssmmssessesesssssesessssssses oo
2.1.7 Macro “esesnsanenerersnssssassanassesaenne . 4
2.1.8 MSID Selection .. ettt e st e s e se s ar et e e e seebeese e e snesennesesenenenn 4
2.1.9 Operating SyStem SKEll ...cvo.oveeeecoreereoneesoeess s sesssss s oo 4
2.1.10 Command Line Comp SPECIfICAUONccovrvmmummeenrreseemmaeesssess oo 5
2.2 GCB User Interface Specifications- cevtesssansserensnsncasnensesane SRR .
22.1 Graphical SYMBOLS ..oovvevvervroscereerssssme s seeese s 6
22.2 EXPIESSION BUIIGET ...ooovovrereeesecoreesses e os e oo 7
22.3 Graphical Symbol Placement Model w.........v..ocooeesoosrooooooooo 7
22.3.1 Grid-based vs. Cell-based Placement ... 8
2.2.4 Graphical Placement Model Design Specificationcooovvooovoooeooooo 8
2-2.5 POPUPS A1 TEXE FIEIAS worvoreorer v ereeerssssnsssses s 9
2.2.6 Symbol/Work Area Manipulation FUNCHONSvvvvummeeeeeseeeoooooo 9
S L 9
22.62 CONNECE SYMBOIS .overeeeeeeerreensses oo oes s oo 9
22:6.3 MOVE BIOCK ..ccooeremee et sesness oo 10
22.6.4 DEICLE BIOCKcrvoerrvnreeereesnsssees e 10
22.6.5 DEIEte SYMBOL ..cocvrvreeerreeresee e 11
22.6.6 DEICIE LINC ..o eerereeee e oo 11
226.7 UBAO oot sssse e s s 11
2268 P ottt s 11
2.2.6.9 Select Font and Symbol Size ...u..oeevvveeneeereeseeeoo 11
2.2.7 Mouse Function SUMMALY oottt ooeees oo 12

Graphical Comp Environment Specs

Page i

-_—_—mmm

2.3 GCB Environment Specifications_ cnesntsennenreaeerae e eennesnnsns 13
231 SOftWAr® ERVTORMEN .o 13
232 HardWare EVTORMENC o 13

2.4 GCB Prototype DeSign SPECIfICALONS ..o 14
241 GCB Data SIUCIUIES .o 14

2.4.1.1 Comp Status Structure ... Sttt n e s ae e s ne s e e 14
2.4.1.2 Work Area Cell S TUCTUIEoonreeontereecmeenerenetsesesss e 15
24.1.3 Symbol Structure e s aa sttt oo 15
2418 L0 LSESUUCKULE .o 17
24.1.5 Line MEP SHUCHIE oo 17
24.1.6 Line Cell S 17
2417 UNDO S180K SIUCIIE oo 17
242 OB DA FIES oot 18
2.4.2.1 Graphical COMP FHE oot eeersmes s o 18
2422 ASCHo CODP FAIE e 18
2.4.2.3 Comp LBTLY st 18
2.4.2.4 WorkStation Global TaDIE o 19
2425 MSIDTDIE oo 19
2426 USCr MBCTO FIIES oo 19
2.4.2.7 User CONAGUIALON Fle ..o 19

2.4.3 GCB Module Hierarchy

e
o

Page Graphical Comp Environment Specs

Purpose

1.0 Purpose

This document represents a concept for the Graphical Computational Program (Comp)
Environment. A summary of the investigations made concerning the design and implementation
of the Graphical Comp Builder Prototype (GCB) and its supporting compiler and execution
environment are presented. These discussions will provide the basis from which the Graphical
Comp Environment Prototypes will be buiit. They will also serve as one of the measures by which
the completed Graphical Comp Environment concept and prototypes will be evaluated.
The prototype Design Specifications will be broken into the following major sections:

. Graphical Comp Builder Prototype (GCB)

. Graphical Comp Compiler Prototype (GCC)

. Graphical Comp Execution Environment Prototype (GCEE)

The Graphical Comp Environment will require all three of the above identified parts to be a
complete and functional system. Each part will be a separate and independent program, but each
will be designed to operate with the other two.

Page 1 Graphical Comp Environment Specs

GCB Feature Specifications
\

2.1 GCB Feature Specifications

The Graphicai Comp Builder Prototype will provide a number of features to allow users, such as
flight controllers and engineers, to very easily design and document fault detection algorithms.
The number one goal of the Graphical Comp Builder Prototype is to be a tool which is easy to use,
yetcontains the elements which are necessary to build fault detection Comps. Many of the features
specified address the ease of use goal.

The Graphical Comp Builder Prototype will also contain several features designed to aid the Comp
implementor in the development of Comps and their supporting documentation. Some of these
features include: a Comp Executer, path generator, and a graphical means to view logical
expressions.

2.1.1 Graphical Interface

The Graphical Comp Builder Prototype will use a set of graphical symbols to represent the
algorithms which are needed to perform fault detection and notification. The graphical nature of
the Graphical Comp Builder Prototype will make the tool easier 10 use than existing Comp
builders. The graphical interface specifications are discussed in their own section due to their
importance to the success of the entire Graphical Comp Environment. The graphical interface
specifications are contained in Section 2.2 on page 6.

2.1.2 MOAL Support

The Graphical Comp Builder Prototype will allow the user to construct Comps which are based on
the MOAL (Mission Operations Application Language) constructs as identified in the Comp
Builder / Comp Manager Level B Requirements (JSC-23459). The MOAL language has been
specified by JSC flight controllers. The MOAL contains the language elements required by flight
controllers to perform fault detection algorithms.

2.1.3 Report Generation

The Graphical Comp Builder Prototype will provide several reports to document the developed
graphical Comps. The Graphical Comp Builder Prototype will generate a listing of all Comp
inputs, outputs, and possible test cases. The Graphical Comp Builder Prototype will also generate
a report detailing the algorithms contained in the Comps. The algorithm descriptions will be
provided by the user during the specification of DECISION symbols.

The Graphical Comp Builder Prototype will generate a report identifying all possible execution
paths through each Comp. This report may grow to be very large depending on the size of the
Comp, so the user will be notified during the path generation process as to the number of paths.
The user will be allowed to abort the path generation process.

2.1.4 Graphical Representation of Logical Expressions

The Graphical Comp Builder Prototype will allow the user to select a DECISION symbol to be
graphically represented. This function will allow the user to see the logical expression of the
DECISION symbol to be graphically represented. The logical operators will be represented as
graphical symbols. This function will allow the logical expressions of DECISION symbols to be
viewed in terms of AND gates and OR gates in a graphical manner. The graphical representation

of logical expressions may be viewed or printed only. The logical expression cannot be modified
or maintained by the graphical representation.

Page 3 Graphical Comp Environment Specs
PRECEDING PAGE BLAMK NOT FILMED

GCB Feature Specifications

2.1.10 Command Line Comp Specification
The Graphical Comp Builder Prototype may be initially executed with a Graphical Comp name
specified as an argument to the Graphical Comp Build

er Prototype program. In the event that a
Comp filename is specified, the Graphical Comp Builder Prototype will load the Comp into the
Work Area on start-up.

Page 5

Graphical Comp Environment Specs
PRECEDING PAGE BLANK NOT FILMED

GCB User Interface Specifications

2.2.2 Expression Builder

There will be two Separate methods available for expression building within the Graphical Comp
Builder Prototype when the user selects a DECISION symbol or a SET symbol. Upon selecting
either a DECISION or SET symbol, the user will have two options: 1) typing the éxpression into
a popup using the keyboard and having the expression parsed after it is completed, or 2) using a
mouse-driven menu and having the choices for operator and operand constrained at each step in
the input process. The second method will be almost identica] to the mouse-driven expression

how the expression must be completed. If the user selects a token from the Expression Builder
using the mouse, then the expression must be completed using the mouse and the Expression
Builder. If the user begins typing in an expression, then the expression must be completed using
the keyboard. The user will be given the option of aborting the building of an incomplete

The benefit of this approach is that the user who does not need the guidance of the editor may input
expressions quickly, but without immediate error checking, while the novice user will be able to
build both Comps and the expressions within the Comps using mouse driven menus. Both means
of expression building will ensure that only logically sound and syntactically correct expressions
are entered. The Expression Builder will step the user through the selection of the expression
operands and operators in a way that is syntactically correct (See the MOTIF Comp Builder for
more details.) The keyboard method will also ensure that syntactically correct Comps are built by
parsing the expression after the user has completed typing the €xpression into the popup.

Builder Prototype.
2.2.3 Graphical § ymbol Placement Model

Page 7 Graphical Comp Environment Specs

PRECEDING PAGE BLANK NOT FILMED

i

GCB User Interface Specifications
2.2.5 Popups and Text Fields

information to the user. User input text fields wiil implement the standard OpenLook text field
editing functions to provide a user-friendly and consistent interface. The following text editing
functions will be available in all text edit fields:

. Home and End keys
. Insert and Delete keys

. All other traditiona] OpenLook text edit functions, including mouse controlled
positioning of the text cursor

Edit Mode -> Add Symbol -> Edit Mode -> Move Symbol -> Edit Mode
Edit Mode -> Add § ymbol -> CANCEL -> Eqj; Mode

In both cases, the user is returned to Edit Mode.

The following sections specify the operations that can be performed on the graphical symbols. The
functions allow the user to add symbols, connect symbols, and in general maintain the Symbols in
the active Comp.

2.2.6.1 SelectS ymbol

been placed by the user.

2.2.6.2 Connect S ymbols

Page 9 Graphical Comp Environment Specs
PRECEDING PAGE B! Any NOT Y opapp

GCB User Interface Specifications
2.2.6.5 Delete Symbol

The user may abort the Delete Symbol function ar any step by clicking the CANCEL button in the
Status area or by hitting the ESC key.

2.2.6.6 Delete Line

an unambiguous segment of the line to be deleted.

The user may abort the Delete Line function at any time by clicking the CANCEL button jn the
status area or by hitting the ESC key.

2.2.6.7 Undo

e R -
Page 11 Graphical Comp Environment § pecs

PRECEDING PAGE BLANK NOT FILMED

GCB Environment Specifications

2.3 GCB Environment Specifications

The Graphical Comp Builder Prototype must be available to as many potential users as possible.
These potential users have a varied assortment of computer hardware available on which to run the
Graphical Comp Builder Prototype, so the Graphical Comp Builder Prototype will be written in as
portable a way as is reasonably possible.

2.3.1 Software Environment

The Graphical Comp Builder Prototype will be written initially in the C programming language
using X Windows to supply and control the graphical interface. The Graphical Comp Builder
Prototype will be implemented eventually in the Ada programming language when support for X

of the Graphical Comp Builder Prototype will not preclude a conversion to the MOTIF widget set
to meet NASA’s current and future usage requirements.

2.3.2 Hardware Environment

This will allow any bitmapped display connected to a PC compatible, workstation, or mainframe
to execute the Graphical Comp Builder Prototype.

Page 13

Graphical Comp Environment Specs
PRECEDING PAGE BLANK NUT FiLMED

GCB Design Specifications

comp_create_date(],
comp_create_time(],
comp_update_date(],
comp_update_timef],
comp_purpose(];
}
2.4.1.2 Work Area Cell Structure

The Graphical Comp Builder Prototype will divide the work area into a number of smaj] cells
which will not be visible to the user, These cells will be used internally to manage the work area.

struct Cell {

int cell_type; /*if -1, free cell, otherwise type indicator */
union {
Symbol *symbol; /*if -1, free cell, else index into symbolmap*/
LineList *lines; /*linked list of lines - cel] may be part of >1 line*/
} cell_entry;

}
The following stactically sized and allocated array of cell map strucutres will be maintained;
struct Cell cell_map[MAX_ROWS*MAX_COLS L

2.4.1.3 Symbol Structure

int symbol_type; /*identifies the type of symbol*/

int height, width; /*size of symbol in cells*/

int ulex, ulcy; /*upper left corner x and v coordinates*/
LineList *from_lines; /*list of lines entering symbol*/

Page 15 Graphical Comp Environment Specs

PRECEDING PAGE BLANK NOT FiLMED

GCB Design Specifications:

2.4.1.4 Line List Structure

struct LineList {

LineMap *line; /* index into line map */

LineList *next; /* next line for same cell or symbol */
}
2.4.1.5 Line Map Structure

The Line Map Structure will identify each logical line. The Line Map Structure will contain the
symbols connected by the line, and will point to a Line Cell Map Structure which will list all the
work area cells used by the line.

struct LineMap (

LineCellMap *line; /* list of line cells */

int from, to; /* indices to symbol map */
)
struct linestruct linemap{MAXILINES h

2.4.1.6 Line Cell Map Structure

struct LineCellMap {
int cell_row, cell_col; /* cell map indicies */
LineCellMap *next; /* pointer to next cell map enury */

}

2.4.1.7 UNDO Stack Structure

The UNDO Stack Structure wil] maintain a list of the last operations performed by the user. This
stack will allow the user to “undo” certain operations.

Page 17 Graphical Comp Environment Specs

PRECEDING PAGE BLANK NOT FiLmep

GCB Design Specifications
This directory may exist anywhere in the directory hiearchy, but must be named CompLib. The

initial CompLib directory will be created in the GCB directory in the user’s home directory.
2.4.2.4 WorkStation Globaj Table

frequently by the user.

2.4.2.6 User Macro Files

The user will be able to store named macro files. These files will be created by the Graphical Comp
Builder Prototype and wilj be stored in the user specified macro directory. The default directory
for macro files initially will be the GCB directory in the user’s home directory. The macro directory

path may be modified and the new path may be recorded in the user’s configuration file, Macro
files will have the following extension: *MAC.

2.4.2.7 User Configuration File

The Graphical Comp Builder Prototype will have a number of features that are user configurable.
The user will have the option of saving their desired configuration to a file which is accessed every
time the Graphical Comp Builder Prototype is executed, The user configuration file wii} be stored
in the GCB directory in the user’s home directory and wil] have the following name: User.CFG.

The following options will be stored in the User Configuration File:
. The directory path containing the Graphical Comp Files last accessed by the user will

selection.

. The Comp Library directory path will be one of the options stored in the user’s
configuration file. This wi]] allow the user to Place the library directory where needed.

. The path to the user’s macro files can be specified in the User Configuration File. This
will allow the user to place their macro files where needed.

Page 19 Graphical Comp Environment Specs

PRECEDING MPAauce Bkl o0l rinmikD

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 6220 Culebra Road
San Antonio, Texas 78228-0510

GRAPHICAL COMP BUILDER
PROTOTYPE DOCUMENTATION

NASA Grant No. NAG 9-435
SwRI Project No. 05-3531

Prepared by:
Timothy J. Barton
Jeremiah M. Ratner

Prepared for:
NASA
Johnson Space Center
Houston TX 77058

August 28, 1991

Approved:

%@ﬁ/ﬁ@dh

Melvin A. Schrader, Director
Data Systems Department

——

Table of Contents

L0 PUFPOSE .ceueerrrenemnnsreecmesnesssssnsssosseseses oo coceannsessersssnneanes cesseeresnnsesesenssnne w1
2.0 Graphical Comp Builder Prototype Conceptseeuueeuvseserneseeersoeoososoooon 2
2.1 Graphical Representation of Comp AlgOrithmseccveemenrreeeeoemeeoo 2
2-1.1 GraphiCal SYMBOIS ..ovoovoeeeeeeserrscosesesoee s 2
2.1.2 Logical CONNECHNG LINES -....cooeeevevrecemomos oo 3
2:1.3 EXPIESSION BUIAET .ovcvooeecereresososoeoeoe s 3
214 WOTK ATER .oooeorveoeeseesenss oo 4
2.1.4.1 Graphical Symbol Placement Model ..oooooooovoo 4

2.2 Graphical Comp HIBATCRY oo 5
2.2.1 Multiple Position L 5
222 COMP SHUCIUTE .o eeenesse oo 5

23 REPOML GENETANON ..ottt 7
24 AUOMALC COAE GENETAON v v 7
29 USETIMEIEACE oottt oo 8
3.0 Graphical Comp Builder Prototype Features cseressennssanecsnnnennes 10
3.1 Graphical Representation of Comp AIGOTTMScoeeeveeermerrrreeeseseoooo 10
LD WOTK ATCR ettt 10
312 AQASYMBOL .ot 10
3:1:3 MOV SYMBOL .o 10
318 BAIESYMBOL .ottt 11
3:1:5 SYMbOL HMPIOGe vttt 11
3+1:6 DEIEte SYMBOL .ot 11

317 CONNECE SYMBOIS vt 11

3.1.8 Delete CONNECHNG LINE .o 11

3+1:9 MOVE BIOCK ..ottt 12
31101 CODY BIOCK .ottt 12
3111 DELE1e BIOCK .ot 12
3:1:12 UNDO and CANCEL ..ot 12

3-2 POSION MANGGEMENL ..ot 13
3:2:1 SEl€Ct POSION .ot 13
A 13

33 COMP MANAGEMENL ..ot oo 13
331 SEIECE COMP .ottt oo 13
3:3:2 CLOAE COMP ..ottt 13
3:3.3 Select Comp ROOL EICMENL ..o 14
3.3.4 Edit Comp PUIPOSE oo 14

Page i GCB Documentation

3-3-5 Display COMP CAUFIOWccoro oo 14

3:3:5.1 DISPIAYET ..o 14

336 INStALl COMP .t 14
3.3.7 Validate COMP e 15
3-3-8 COMP REPOIt GENETALUON ..o 15

3.4 Element MERBEEMENT vt 15
31 SCLECERMENL oottt 15
342 COQE BIEMENL ..ot 15
383 DISIE EIEMENL ..ot 15
344 SAVE EIEMENL oo 15
345 CODY EICMENL ottt 16
3.4.6 Edit Element PUIPOSE oot 16
347 PAREIMENL oottt 16
348 AUIEIRCN ot 16
349 NS EIMENE ..ot 17

3.5 Options MARAGEMEN ..ttt 17
331 DISPIAY OPHONS .o 17
3.5.2 Symbol DISPLAY oo 17
333 SYMOOLSIAD ottt 18
324 AUAILTOREIC e 18
335 SCUCOLOIS et 18
3.5.6 Set Target LA0GUAGE e 18

36 LD SYSIEM ottt 19
+0 GCB Implementation NOtes w.....oworrvoesoessoo 20
A DABFLCS vttt 20
4.1.1 Position DIRCIOTY ettt oo 20
4.1.2 Comp e 20
H13 COMP FIle ot 20
1.4 Graphical EIMENt File ..o 21
4.1.5 Library Graphical Element Directory P LD
4.1.6 Comp Installation Files L D)
3181 Comp Header File ..o 22

4.1.6.2 skeleton_element.o L DD

4.1.7 Element Installation Files T DD
4.1.7.1 Element C Language Source File LD D

4.1.7.2 Element C Language Object Fileovvuvrvnovmes oo 23

H1.8 POSISCHPUFIIES o T 23
4.1.8.1 PostScript Template File ..o 23

SLB2 POSISCHPUFIIE .ot 23

19 HEID TXUFIIE w0 23

Page ii GCB Documentation

“ h

4.1.10 Error LOg FlE woouuumuuumueniseeneeceseaoeosseeeeeeoseeeeees oo 23

4.1.11 User Configuration Filecceeeemorooooomeeeeeeeoeeeoooooooooooooooooooooooeo 24

4.1.12 Displayer OUtpUL FIleccmeeveerrmeoeeeemseeeeeseseeeoos oo 25

4.1.13 User Defined Functions Directory and Filesooooveeeeoeeoeeeeeoooo 25

4.1.14 Object ACCESS TaDIEcvveveeereesseneeeeeeeeeeeeeeees oo oo 25

4.1.15 Work Station GLOBal Tableuuuroooveveeeeeeeeeeeeeoosesoeoeoooooooooooooooo 25

4.2 Dala SHUCKUIES ..c.oovvrreeeimseren oo sesssssenesee s seeeeseeeessosos oo oo oo oo eeoeoeeooe. 26

4.2.1 SYMDBOL AITAY .covvvrrrrnrioieceereeeseceeeeeees e eeeeoe oo 26

4.2.2 Cell MAP ...ooovrvvevvereeneeseneeececsceessssesses e ee oo oo oo oo ee oo 26

4.2.3 Li0E SIUCIIES w.vovvrerievreneeeeeecceeesssseeeeeeoe e seseee oo 26

4.2.4 SYMBOL TADIE ..ovvvvvevvveemeeeeee s tsnseeeee e seeese oo oo 27

4.3 GCB Program FIOWoooeeviceeccereseseeseserossooeeessoesssoess oo 29

4.3.1 Section 1 - INitializationccooweeomeomoooooeeeomeoooooooo 30

4.3.2 Section 3 - Callback ROUUNES ...ocovvervrvererooeeeeseeeseseooooooooooooo 30
5.0 Appendix A
6.0 Appendix B

Page iii GCB Documentation

Purpose
b " T —‘—__—
1.0 Purpose

This document describes the functionality and implementation of the Graphical Comp Builder
Prototype. The Graphical Comp Builder Prototype allows users to graphically build and maintain
fault detection algorithms (Comps) for control center environments.

The Graphical Comp Builder Prototype was designed and implemented as the result of
investigation and experience in the following areas:

* existing NASA Comp Builders
* existing NASA high-level languages, such as UIL, GOAL, etc.
* existing applications which manipulate graphical symbols

Knowledge gained from investigations of these three areas formed the basis for the specification
and subsequent implementation of the Graphical Comp Builder Prototype.

This document describes the features provided by the Graphical Comp Builder Prototype and also
describes the implementation of these features. A description of the main concepts of the Graphical
Comp Builder Prototype is contained in the following section, Section 2.0. A list of the features
provided by the Graphical Comp Builder Prototype is contained in Section 3.0, and a description
of the implementation of the features is contained in Section 4.0.

Page 1 GCB Documentation

GCB Concepts

[_ e

2.0 Graphical Comp Builder Prototype Concepts

The Graphical Comp Builder Prototype was designed around several basic concepts to make the
process of developing and maintaining Comp algorithms an easier and more intuitive task. This
section describes the key concepts of the Graphical Comp Builder Prototype.

2.1 Graphical Representation of Comp Algorithms

One of the most important aspects of the Graphical Comp Builder Prototype is evident in the
Prototype’s name. The Graphical Comp Builder Prototype allows the user to graphically represent
Comp algorithms instead of using traditional text based methods. Comp algorithms are often
designed and documented using graphical representations. Comp algorithm documentation often
looks much like a flowchart. The Graphical Comp Builder Prototype was designed to support the
development and maintenance of Comp algorithms using flowchart type constructs. This feature
makes it very easy to implement Comp algorithms from design documentation and allows the
Graphical Comp Builder Prototype user to maintain Comp algorithms using a representation that
is familiar and comfortable.

The graphical Comp algorithm representation supported by the Graphical Comp Builder Prototype
is based on a set of graphical symbols and logic flow lines. The user builds the graphical Comp
algorithm from the graphical symbols. The order of execution, or algorithm flow, is determined by
the way in which the symbols are connected by the user.

2.1.1 Graphical Symbols

The Graphical Comp Builder Prototype uses a predefined set of graphical symbols to represent the
various actions that are performed by Comp algorithms. These symbols form the basic building
blocks of each Comp algorithm and represent the basic operations which are performed in every
Comp. The set of graphical symbols is available in a palette menu in the lower left-hand corner of
the Prototype’s screen. The user selects the desired symbol and then places it in the Comp Work
Area (see the Work Area Section on page 4 for more information about the Work Area) using the
mouse. The user may then connect the symbols in the Work Area to define the Comp algorithm
flow during Comp execution. The Graphical Comp Builder Prototype allows the user to construct
Comps from the following graphical symbols:

BEGIN oval in shape, no entry point, single exit path. This symbol represents the
beginning of the Comp.

END circle in shape, multiple entry points, no exit path. This symbol indicates the
end of the Comp.

IF modified diamond shape, multiple entry points, two exit paths. This symbol is

used to enter logical expressions into the Comp.

SET rectangle shaped, multiple entry points, single exit path. This symbol
represents the “setting” of a variable or signal, similar to a programming
language assignment statement.

PRINT hollerith card (punched card) shaped, multiple entry points, single exit path.
This symbol represents the output of a formatted string during the execution
of the Comp.

CALL rounded rectangle shape, multiple entry points, single exit path. This symbol

indicates that the current Comp is to be suspended, and the Comp named

. E

Page 2 GCB Documentation

GCB Concepts

within the symbol is to be started. When the named Comp completes its
execution (reaches its END symbol), execution resumes in the current Comp
at the next symbol. This symbol functions much like a subroutine “call” in a
C or FORTRAN language program.

ACTIVATE modified rectangle shape, multiple entry points, single exit path. This symbol
represents the start of execution of an asynchronous Comp in parallel with the
current Comp. This symbol functions much like a fork() call ina C language
program.

STOP octagon (stop sign) shaped, multiple entry points, single exit path. This
symbol indicates the termination of a parallel Comp. This symbol is used to
“stop” a Comp which was spawned by an ACTIVATE symbol.

PAUSE alarm clock shaped, multiple entry points, single exit path. This symbol
causes the Comp to pause for a specified time period.

Itis from this collection of graphical symbols that the user constructs a Comp algorithm.

The shape of the IF, PRINT, and SET symbols were chosen for their expandability. These symbols
often may have to expand to allow the Comp designer 1o enter long expressions or text strings. The
squared sides of these symbols may expand or shrink depending on the size of the expression
entered by the Comp designer.

2.1.2 Logical Connecting Lines

Once two or more graphical symbols have been selected and entered in the Work Area, then the
user may logically connect the symbols to define the control flow between the symbols during
execution. The user may very easily introduce looping or recursion simply by connecting one
symbol to another.

2.1.3 Expression Builder

The IF and SET graphical symbols may contain textual logical expressions. It is through these two
symbols that much of the work of a Comp algorithm is performed. The IF symbol is used to
represent a logical expression which returns a true or false value. The result of the logical
expression determines which connecting line is traversed out of the symbol. The SET symbol is
used to assign values to local variables, global variables, and to Work Station Globals. The SET
symbol may be used to put values into Object Access (data acquisition) for retrieval by other
control center applications.

The logical expressions in the IF and SET symbols are called Comp Expressions. Comp
Expressions may be entered via the keyboard or the expressions may be constructed using the
Expression Builder. The Expression Builder is a collection of logical expression building blocks
contained in a menu. The Expression Builder steps the user through the building of Comp
Expressions by activating only the expression building blocks that are valid for the current state of
the logical expression. The Graphical Comp Builder Prototype provides the Expression Builder for

novice users and also allows the more proficient user to enter expressions directly via the keyboard
if desired.

Each IF and SET graphical symbol also allows the user to enter two levels of supporting
documentation for each expression. The user may enter a short description of the expression and a
much longer textual description if desired. The short description may be used to aid the user in the

Page 3 GCB Documentation

GCB Concepts

b N

building of the Comp algorithm, whereas the larger description field is designed to provide
supporting documentation in the printed reports generated by the Graphical Comp Builder
Prototype. These two documentation fields allow the user to logically design and document Comp
algorithms. The logical design of the Comp algorithm may be constructed and documented by one
user, and the Comp Expressions may be entered at a later date, possibly by another user. The
documentation support provided by the Graphical Comp Builder Prototype aids the Comp design
and development process by maintaining the Comp documentation with the Comp itself,

2.1.4 Work Area

The Graphical Comp Builder Prototype allows the user to construct Comp algorithms using
graphical symbols and logical connecting lines. The building of the Comp algorithm takes place
within the Work Area. The Work Area is a large, scrolled area in which the graphical symbols are
placed and connected. A majority of the time spent building a Comp with the Graphical Comp
Builder Prototype is spent in manipulating the graphical symbols and the connecting lines in the
Work Area. The Graphical Comp Builder Prototype has been designed to provide the user with
powerful, yet easy to use functions to manipulate the graphical symbols and connecting lines in the
Work Area.

2.1.4.1 Graphical Symbol Placement Model

The Graphical Comp Builder Prototype allows the user to select a graphical symbol from a palette
menu and then place the symbol in the Work Area. The user may then position the graphical
symbol in any unoccupied place in the Work Area by “dragging” the symbol using the mouse. The
graphical placement model, i.e., the way in which components are placed and connected on the
screen, is a hybrid of the two styles used in most software packages that involve the manipulation
of graphical symbols. These two methods are:

* A grid-based approach
+ A cell-based approach

In the grid-based approach, the drawing area is defined by a point grid. A symbol is “snapped” to
the defining set of grid points closest to the desired location; a drawn line is snapped to the grid
points that conform most closely to its path. The benefit of grid-based approach is the precision
with which components can be placed is configured by the granularity of the grid. The grid-based
approach suffers due to the fact that it is harder to place and connect symbols than in other methods.

In the cell-based model, the drawing area is defined by a grid of cells. Each component occupies
exactly one cell. The advantage of this approach is that symbol placement is easy; the user doesn’t
have to be concerned with precise placement or uniform spacing. The disadvantage is the
flexibility of arbitrary placement is lost. In addition, connectivity becomes problematic: a line is a
component, and so no more than one line may occupy a cell. Thus, all lines must be a cell width
apart. This severely limits the line drawing capabilities of cell-based applications and negates their
ease of use.

The Graphical Comp Builder Prototype uses a combination of these two approaches. The Work
Area drawing region is composed of a grid of small, unseen cells, and symbols may occupy more
than one cell. Connecting lines may also occupy more than one cell if the line is longer than one
cell in length. Connecting lines are one cell in width but may be many cells in length. Each logical
cell may contain only one of the following:

* a portion of a graphical symbol

\
Page 4 GCB Documentation

GCB Concepts

* a portion of a connecting line
Symbol shapes may expand in one-cell gradations to contain long expressions.
The advantages of this hybrid approach are:

* Ease of symbol placement that is comparable to the basic cell-based approach but more
flexible and efficient in its use of Work Area real estate -- there is less “external
fragmentation.”

« Flexibility of connecting line placement that approximates that of the grid-based approach,
but because of the restriction that only one line may appear in a cell, gives the user more
structured line placement.

* Arbitrarily large symbols may be constructed which contain long expressions. This is due
to the fact that a single graphical symbol may occupy many logical cells.

* As with the grid-based approach, it is easier to place arbitrary label text.

The Graphical Comp Builder Prototype provides a number of functions to assist the user in the
development of graphical Comp Elements. These functions allow the user to manipulate the
graphical symbols and connecting lines in the Work Area.

2.2 Graphical Comp Hiearchy

The Graphical Comp Builder Prototype allows the user to construct and maintain Comp algorithms
in a very logical and powerful fashion. The Graphical Comp Builder Prototype contains features
which allow the user to group Comps according to function to aid the Comp maintenance process.
The Graphical Comp Builder Prototype also contains features which allow the Comp algorithm
designer to decompose algorithms into a number of smaller, more manageable components. The
Graphical Comp Builder Prototype implements a hiearchy of three main components to allow the
user to decompose algorithms into smaller, more manageable pieces:

» Position
+ Comp
* Element

Each of these components of the Graphical Comp Builder Prototype are described in following
sections.

2.2.1 Multiple Position Support

The Graphical Comp Builder Prototype was designed to allow the user to group Comp algorithms
according to their function. In a control center environment, Comp algorithms are usually grouped
together based on the flight control position for which they were designed. The Graphical Comp
Builder Prototype contains and supports the concept of grouping and maintenance of Comp
algorithms based on a flight control position. In the Graphical Comp Builder Prototype, the flight
control position is the highest level in the Comp hiearchy.

2.2.2 Comp Structure

A number of logical Comp algorithms may be necessary for each flight control position and the
Graphical Comp Builder Prototype allows the user 1o maintain a number of Comps for each
position. The second level in the Graphical Comp Builder Prototype hiearchy is the Comp. Each
Comp may become a stand-alone executable and may be managed by the Comp Manager

Page 5 GCB Documentation

GCB Concepts

application during control center operations. Each Comp is primarily a logical entity and does not
perform the actual work of the Comp algorithm. The Comp component of the hiearchy does not
contain the graphical symbols or connecting lines.

Each Comp is composed of one or more Comp Elements. The Comp Elements contain the
graphical symbols and connecting lines which contain the logic and control flow of the Comp.
Comp Elements form the lowest level of the Graphical Comp Builder Prototype hiearchy.

Comp Elements are analogous to subroutines of a main program. Each Comp contains one or more
Comp Elements and the Comp serves as a container of its Comp Elements. The Comp is the only
entity which may be managed outside the Graphical Comp Builder Prototype. Comp Elements may
only be maintained using the Graphical Comp Builder Prototype and serve only as the building
blocks from which Comps are composed.

Each Comp contains a root Comp Element. The root Comp Element is the start point of the Comp’s
Element hiearchy. The root Comp Element may contain the entire Comp algorithm or the root
Element may call other Comp Elements. As in traditional programming language subroutines,
Comp Elements may transfer program control flow to another Comp Element. When a Comp
Element reaches its END symbol, control is returned to the parent Comp Element. In the event the
root Element reaches its END symbol, the Comp executable is terminated. Using this concept, the
user may build a Comp of practically unlimited depth and breadth by adding calls to other Comp
Elements. The user may decompose complex Comp algorithms into logical subunits and then
decompose individual logical subunits into even more subunits. The following diagram displays
an example Comp which is composed of eight Comp Elements. This example Comp hiearchy
displays the flexibility available for decomposing complex Comp algorithms into smaller,
modular, more manageable components.

Engine 1 Pump Test Comp

Root Element(PumpTest)
N
(TestPumpl > CTestPumPZ > (TcsLPump3 >
s\
@estPumpZPre@ CI‘estPumpZTemD
"
(LoopACoolanD (LoopBCoolam)

Page 6 GCB Documentation

GCB Concepts

2.3 Report Generation

Comps at three different levels. The user can document the high level design of the Comp,
the high level design of each Element within a Comp, and the user can document each
logical expression within a Comp Element. The Graphical Comp Builder Prototype user
may also document each Comp Element by placing label text at any location in the Work

The combination of these two features make the development of supporting documentation much
easier for the Comp algorithm desi gner.

2.4 Automatic Code Generation

* Once all of the C language source files for each Comp Element have been generated ang
successfully compiled, then 3 C language source file is produced for the Comp. The

Comp’s C language source file contains initialization code and also contains the ¢gj to the

Page 7 GCB Documentation

GCB Concepts

/—_

« After the object files are produced for the Comp and for each of the Comp’s Element files,
then all of the object files are linked together to produce a Comp executable.

« The executable produced from this process can be run during control center operations. The
executables produced by “he Graphical Comp Builder Prototype are dependent on several
other applications in the control center:

The executables produced by the Graphical Comp Builder Prototype are usually
controlled by a master program called the Comp Manager. The Comp Manager
application is used to start and stop the Comp executables. The Comp executables are
not designed to be run directly from the command line. The Comp Manager is used to
control and monitor the execution of the executables produced by the Graphical Comp
Builder Prototype.

The executables produced by the Graphical Comp Builder Prototype display messages
on the flight controller’s screen to report the status of the system being monitored by
the Comp and to report the status of the Comp itself. The Comp designer specifies what
types of messages to display and when to display the messages during execution by
placing PRINT symbols in the Comp’s Elements. The Comp executables do not display
these messages on the flight controller’s screen directly. The messages are sent to
another application program which controls the flight controller’s screen.

The executables produced by the Graphical Comp Builder Prototype retrieve data from
the control center’s data acquisition system. The Comp executables automatically are
built with the proper interfaces to the control center’s data acquisition system.

2.5 User Interface

The Graphical Comp Builder Prototype is an X Windows and MOTTF based tool. The Graphical
Comp Builder Prototype screen is composed of four main areas:

« MOTIF menu bar

« Comp Element Work Area

+ Comp status area

« Graphical symbol palette menu

The MOTIF menu bar contains most of the Graphical Comp Builder Prototype menus. The Comp
Element Work Area is a large scrolled window area in which the graphical Comp is constructed.
The Comp status area contains various information to identify the current Comp Element which is
active in the Work Area and also contains information about the Comp. The graphical symbol
palette menu contains bitmappe.l icons which represent the available Comp Element building
blocks. The graphical symbol palette menu is overlaid with the Expression Builder during the
completion of IF and SET symbcls.

The Graphical Comp Builder Prototype uses popups wherever necessary to input or display
information to the user. User input text fields are implemented using the standard MOTIF text
fields to provide a user-friendly and consistent interface. Each popup uses a consistent button
layout to provide a consistent interface:

« each popup contains a CANCEL button which is located at the bottom left of the popup
form.

« each popup contains a HELP button which is located at the bottom right of the popup form.

Page 8 GCB Documentation

GCB Concepts

I

* most popups contain a DONE button which is located at the bottom of the popup form just
to the right of the CANCEL button.

\

Page 9 GCB Documentation

GCB Features
“

3.0 Graphical Comp Builder Prototype Features

The Graphical Comp Builder Prototype provides a number of features to allow users, such as flight
controllers and engineers, to very easily design and document fault detection algorithms. This
section details the various features and capabilities of the Graphical Comp Builder Prototype.
Section 4.0 of this document discusses the implementation of these features.

3.1 Graphical Representation of Comp Algorithms

The Graphical Comp Builder Prototype allows the user to build and maintain Comp algorithms
using graphical symbols much like a flow chart. The flow chart type representation of the Comp
algorithm is easier to understand than existing textually based methods. The flow chart type
representation of the Comp algorithm is constructed in the Work Area portion of the Graphical
Comp Builder Prototype’s screen. The Graphical Comp Builder Prototype provides a number of
features which allow the user to very easily build and maintain the Comp algorithms in the Work
Area.

3.1.1 Work Area

The Work Area has several features to make the building and maintenance of graphical Comps
easier. The Work Area is a large, scrolled window. The user may construct graphical Comps which
are larger than the size of the Work Area. The Work Area scroll bars allow the user to move within
the graphical Comp. The user may also "zoom out” to view the Work Area in a reduced scale view,
The reduced scale view allows the user to view the entire Comp algorithm in the Work Area. The
user may edit the Comp algorithm in the Work Area while working in the reduced scale view. All
functions which are available i1 the full scale view are also available in the reduced scale, or
zoomed view.

The Work Area has two "speed” menus which provide both Work Area specific funtions and
general file functions. The Work Area specific functions are only available via the speed menus.
The general file functions are available via other menus within the Graphical Comp Builder
Prototype.

3.1.2 Add Symbol

The user may add a new graphical symbol to the Comp algorithm in the Work Area. To add a new
symbol, the user clicks the left mouse button in one of the symbols in the symbol palette menu. If
the symbol to be added is a BEGIN or END symbol, the symbol will appear in the Work Area and
the user may place the symbol using the mouse. Otherwise, a popup will be displayed which allows
the user to complete the information required for the symbol. Once the information has been
entered in the popup, the new symbol will appear in the Work Area and the user may place the
symbol using the mouse.

3.1.3 Move Symbol

The user may move a single graphical symbol within the Work Area by placing the mouse pointer
in the symbol and then dragging it within the Work Area while holdin g down the left mouse button.
If a symbol contains connecting lines, its connecting lines will be deleted after the symbol is
moved. The Graphical Comp Builder Prototype currently does not attempt to maintain line
connectivity after a symbol has been moved. This limitation is mitigated by the ease with which
the user can connect symbols and by the Move Block function which allows the user to move a
collection of symbols while maintaining their line connectivity.

\

Page 10 GCB Documentation

GCB Features

The Move Symbol function can be "undone" by the UNDO function. The UNDO function wil
restore the symbol to its original location and will restore any connecting lines if any existed at the
symbol’s original location.

3.1.4 Edit Symbol

The user may edit the contents of any symbol in the Work Area by placing the mouse pointer in
the symbol and then clicking the right mouse button, The same popup which allowed the user to
originally define the symbol will then allow the user to modify the symbol’s contents and
attributes. The UNDO function will not recover changes made by the Edit Symbol function.

3.1.5 Symbol Im plode

3.1.6 Delete S ymbol

The user may delete a single graphical symbol within the Work Area by placing the mouse pointer
in the symbol and then clicking the left mouse button while the shift key is held down. The
graphical symbol and its connecting lines are deleted from the Work Area.

The Delete Symbol fucntion can be "undone" by the UNDO function. The UNDO function will
restore the symbol to its original location and will Testore any connecting lines if any existed at the
symbol’s original location.

3.1.7 Connect Symbols

symbol and clicks the middle mouse button.

Connecting lines may not go thrcugh symbols other than the start or end symbol. Connecting lines
have an associated direction and the connecting lines are drawn with arrow heads to indicate the
direction.

The Connect Symbols function can be "undone" by the UNDO function. The UNDO function will
remove the connecting line which was just added to the Work Area.

3.1.8 Delete Connecting Line

The Delete Line fucntion can be "undone” by the UNDO function. The UNDO function will restore
the connecting line which was deleted.

Page 11 GCB Documentation

GCB Features

P I

3.1.9 Move Block

The Move Block function allows the user to mark a set of symbols and their connecting lines using
a rubber-banded box and to move them via the mouse to another location within the Work Area.
The Move Block function is available via the right mouse button speed menu in the Work Area.
The user selects the rectangle anchor point by clicking the left mouse button, then the user can
expand the rectangle by moving the mouse. The user can anchor the size of the bounding box by
clicking the left mouse button a second time. The user will see a rectangular box which indicates
the area to be moved and can place this area by moving the mouse. The selected area can then either
be anchored in the new location by clicking the left mouse button, or the Move Block function can
be aborted by clicking the CANCEL button in the Status area.

The Move Block fucntion can be "undone” by the UNDO function. The UNDO function will move
the symbols and their connecting lines to their original position in the Work Area.

3.1.10 Copy Block

The Copy Block function allows the user to mark a block of symbols and their connecting lines
using a rubber-banded box and to copy them to a new location in the Work Area. The Copy Block
function is available via the right mouse button speed menu in the Work Area. The user selects the
Copy Block rectangle anchor point by clicking the left mouse button, then the user can expand the
rectangle by moving the mouse. The user can anchor the size of the bounding box by clicking the
left mouse button a second time. The user will see a rectangular box which indicates the size of the
area to be copied and can place this area by moving the mouse. The selected area can then either
be anchored in a new location by clicking the left mouse button, or the Copy Block function can
be aborted by clicking the CANCEL button in the Status area.

The Copy Block function can be "undone” by the UNDO function. The UNDO function will
remove the new symbols and their connecting lines from the Work Area.

3.1.11 Delete Block

The Delete Block function allows the user to mark a block of symbols and their connecting lines
using a rubber-banded box and to delete them. The Delete Block function is available via the right
button speed menu in the Work Area. The user selects the rectangle anchor point by clicking the
left mouse button, then the user can expand the rectangle by moving the mouse. The user can
anchor the size of the bounding box by clicking the left mouse button a second time. The user will
see a rectangular box which indicates the area to be deleted. The Delete Block function can be
aborted by clicking the CANCEL button in the Status area.

The Delete Block function can be "undone” by the UNDO function. The UNDO function will
restore the symbols and their connecting lines.

3.1.12 UNDO and CANCEL

The Comp Status Area contains a dual function push button which may be used to cancel or "undo”
functions which are performed within the Graphical Comp Builder Prototype. The push button 1s
a CANCEL button if the user is in the midst of performing any of the above mentioned functions,
otherwise, the push button will be an UNDO button. The push button label changes during
execution of the Graphical Comp Builder Prototype to indicate which function is active.

Page 12 GCB Documentation

GCB Features

‘.—:\

The CANCEL function allows the USET to cancel the current operation. Almost every multi-step
function can be canceled. The following are examples of how the CANCEL button may be used
within the Graphical Comp Builder Prototype:

button. The user may abort during symbol placement and while editing a symbol’s
information in the symbol specific popup.

* The user may abort the connection of two symbols at any point by selecting the CANCEL
button.

Many of the functions performed in the Work Area are recorded so the user can "undo" the function
after it is completed. The UNDO function restores the Work Area to the state it was in before the
user performed the last function. The effects of an UNDO depend on the function last performed

perform a more complex operation such as copying a group of symbols and their connecting lines,
The UNDO function is also available from the left mouse button speed menu.

3.2 Position Management

3.2.1 Select Position

The Select Position function allows the user to select an existing Position directory. The Select
Position function allows the user to traverse the file system hiearchy in the event the Position
directories are not located in a single subdirectory.

3.2.2 Create Position

specified Position.

3.3.2 Create Com p

Page 13 GCB Documentation

GCB Features

’

3.3.3 Select Comp Root Element

The Select Comp Root Element function allows the user to select the root Comp Element of a
Comp’s hiearchy. The Select Comp Root Element function allows the user to select the root
Element from a list of Comp Elements which comprise the Comp.

3.3.4 Edit Comp Purpose

The Edit Comp Purpose function allows the user to edit and save the Comp Purpose text which is
displayed in the Status area of the Graphical Comp Builder Prototype. The Edit Comp Purpose
function displays the Comp’s current Purpose text, and then allows the user to modify the text.

3.3.5 Display Comp CallFlow

The Display Comp CallFlow function displays the hiearchy of the Comp Element calls within a
Comp. The Display Comp CallFlow starts at the root Element of the Comp and recursively
traverses the list of Element calls. The hiearchy of Element calls are presented to the user in the
Displayer.

3.3.5.1 Displayer

The Displayer is a large, output only window that allows the user to monitor the progress of several
operations within the Graphical Comp Builder Prototype. The Displayer allows the user to monitor
the progress of operations which may take more than a couple of seconds to complete. The
Displayer is used during the following operations:

« The Displayer is used during the Installation of an Element. The Displayer allows the user
to view the different stages of Element Installation and also displays status information.

« The Displayer is used during the Installation of a Comp. The Displayer allows the user to
view the different stages of Comp Installation and also displays status information.

« The Displayer is used during the Comp Validation process.

The Displayer popup window is not modal. The user may leave the Displayer popup window on
the screen even after the operation which caused the Displayer to be displayed has completed. This
allows the user to refer to information within the Displayer during the editing of Comp Elements.
The output of the Displayer is recorded into a disk file.

3.3.6 Install Comp

The Graphical Comp Builder Prototype’s ultimate mission is the generation of a Comp executable
which can be managed by the Comp Manager. There are two main steps in the generation of a
Comp executable from the Comp entered by the user:

» The graphical Comp is converted into C language source files.

» The C language source files generated by the Graphical Comp Builder Prototype are
compiled and linked to produce a Comp executable.

These two steps are implemented via the “Instail Element” menu button and the “Install Comp”
menu button. C language source files are generated via the “Install Element” menu button and an
executable Comp is produced via the “Install Comp” menu button. See the Install Element section
on page 16 for more details about the Install Element function.

The Install Comp function first ensures that an object file has been produced for each graphical
Comp Element in the Comp. The Install Comp function then generates several C language source

Page 14 GCB Documentation

GCB Features

files for the Comp. These source files are compiled, and then the resulting object file and the Comp
Element object files are linked together to produce a Comp executable. The results of the Instal]
Comp process are presented to the user in the Displayer.

3.3.7 Validate Comp

The Validate Comp function is designed to verify the data types and sizes of the values retrieved
and stored in Object Access match the definitions contained in the Object Access and Work Station
Global tables. The Validate Comp function presents its results to the user in the Displayer.

3.3.8 Comp Report Generation

following information:
* Comp name
* Comp purpose
* List of Comp Elements which comprise the Comp
* List of global variables used in the Comp
* An Element leve] report for each Comp Element in the Comp

specified Comp.
3.4.2 Create Element

3.4.3 Delete Element

The Delete Element function allows the user to delete 3 Comp Element from the specified Comp.
The user may select from a list the Comp Element to delete.

3.4.4 Save Element

The Save Element function will save all information for the current Comp Element to disk. The
Save Element function wil] also update the Comop file and its related information.

Page 15 GCB Documentatjon

GCB Features

A S

3.4.5 Copy Element

The Copy Element function allows the user to copy the Comp Element in the Work Area to a new
Comp Element with a different name.

3.4.6 Edit Element Purpose

The Edit Element Purpose function allows the user to edit and save the Comp Element’s Purpose
text which is displayed in the Status area of the Graphical Comp Builder Prototype. The Edit
Element Purpose function displays the Comp Element’s current Purpose text, and then allows the
user to modify the text.

3.4.7 Print Element

The Print Element function allows the user to print the Comp Element active in the Work Area.
The user may print the Comp Element in one of two modes:

« The user may print a Comp Element in the “normal” mode. The normal mode report prints
the Comp Element in the Work Area using the same size symbols and fonts as is used to
display the Comp Element in the Work Area. The normal mode report requires as many as
4 pages to print the entire Element due to the fact that the Work Area is larger than a single
sheet of 8 1/2" by 11" paper.

« The user may also print a Comp Element in “reduced” mode. The reduced mode report
prints the entire Comp Element on a single 8 1/2" by 11" page. The reduced mode report
uses a smaller symbol size and font to fit the entire Work Area on a single page.

An example report generated by the Print Element function is contained in Appendix B.

3.4.8 Audit Element

The Audit Element function allows the user to verify the Comp Element has been properly
constructed and is ready for Ins:allation. The Audit Element function operates on the graphical
Comp Element active in the Work Area. The Audit Element function is composed of two functions
which perform the following checks:

« The Audit Lines function will check the logical connectivity of each of the graphical
symbols in the Work Area. The Audit Lines function will ensure that each symbol has at
Jeast one line entering the symbol and at least one line leaving the symbol. In the case of an
IF symbol, the Audit Lines function will ensure the IF symbol has both a TRUE and
FALSE logical connecting line leaving the symbol.

« The Audit Expressions function will check the Comp Expression of each of the graphical
symbols in the Work Area. The Audit Expressions function will ensure the Comp
Expression exists and that it is syntactically correct. The Audit Expressions function will
parse and type check the Comp Expression to verify it is syntactically and semantically
correct.

The Audit Lines and Audit Expressions functions can be performed separately or they may be
performed together.

The Audit Element function highiights the symbols which have failed the specified Audit tests. The
symbol highlighting may be turned off via the Clear Audit function.

Page 16 GCB Documentation

GCB Features

N

3.4.9 Install Element

The Install Element function generates a MOAL or C language source file for the graphical Comp
Element in the Work Area. If a C language source file is generated for the Element, then the C
language source file is compiled to produce an object file. If an object file is successfully produced,
the Install Element function marks the Comp Element as up-to-date. If the user makes and saves
any changes to the graphical Comp Element, the Comp Element is marked as being out-of-date.
This feature will ensure the user’s object files are consistent with their corresponding graphical
Comp Element. The Install Element process is presented to the user in the Displayer.

3.5 Options Management

The Graphical Comp Builder Prototype has several user configurable options. Some of these
options may be configured during the execution of the Prototype. The following sections describe
the options which are user configurable during the execution of the Graphical Comp Builder
Prototype.

3.5.1 Display Options

The Display Options function displays a popup which identifies the different user configurable
options and each option’s current value. The Display Options popup contains the following
information:

* The name of the flight control Position in which the user is working is displayed.

* The name of the current Comp is displayved.

* The name of the Comp Element which is active in the Work Area is displayed.

* The path and filename of the Displayer output file is displayed.

* The path and filename of the Error Log file is displayed.

* The state of the Symbol Snap toggle is displayed.

* The state of the Comp Element Audit toggle is displayed.

* The target language for Installation operations is displayed.

* The path and filename of the Object Access Table is displayed.

* The path and filename of the Work Station Global Table is displayed.

* The path to the User Defined Functions is displayed.

* The user’s name, as determined from the /etc/password file, is displayed.

* The current time and date, as determined from the computer’s system clock is displayed.
The time and date displays are not updated while the Display Options popup is displayed.

3.5.2 Symbol Display

The Graphical Comp Builder Prototype allows the user to control the display of the expressions in
the graphical symbols. The Symbol Display function allows the user to specify whether the Comp
Expression or Logic Description text should be displayed in the symbols in the Work Area. The

Symbol Display function is available in both the Options menu and the right mouse button speed
menu.

Page 17 GCB Documentation

GCB Features
‘ - “

3.5.3 Symbol Snap

The Graphical Comp Builder Prototype allows the user to place and move the graphical symbols
in the Work Area using either a snap grid or free hand. If the symbols are placed or moved while
snap is turned on, the symbol will be "snapped" so that the center of the symbol will be on a snap
line. The symbols are snapped so that the center of the symbol is on the snap grid. This allows the
user to line up the connecting lines which exit symbols.

The user may also place symbols free hand. The Work Area is bordered by a ruler bar which may
be used to place symbols or connecting lines. The ruler bar contains a moving pointer which
displays the location of the mouse pointer. The ruler bar pointer indicates the center of the symbol
during symbol movement functions and indicates the end of the current line segment during
connecting line functions.

3.5.4 Audit Toggle

The Audit Toggle controls the operation of the Audit Element function. The user may elect to turn
the Audit Element function continuously on or the user may wish to explicitly select the Audit
Element function as desired. If the Audit Element function is continuously turned on, the Comp
Element in the Work Area will be Audited every time an operation is perfomed in the Work Area.

3.5.5 Set Colors

The Set Colors function allows the user to set the foreground and background colors of the
graphical symbols in the Work Area. The Set Colors function affects only the current Comp
Element. The specified colors are saved with the Comp Element and are restored every time the
Comp Element is read into the Work Area. The Set Colors function allows the user to set the color
of individual symbol types, or the user can set all symbol types to the same color. For example, the
user can set all BEGIN symbols to a blue background and all END symbols to a yellow
background.

3.5.6 Set Target Language

The Graphical Comp Builder Prototype was designed to automatically produce source code for
several different languages. The Set Target Language function of the Graphical Comp Builder
Prototype allows the user to select which language to use during the automatic generation of the
source files:

* The Graphical Comp Builder Prototype can automatically generate C source files.

* The Graphical Comp Builder Prototype can also automatically generate MOAL source
files. A compiler currently does not exist for MOAL language files, so a Comp executable
can not be produced if MOAL is chosen as the target source language.

* The Graphical Comp Builder Prototype was also initially designed to support UIL source
files and the Set Target Language popup contains a UIL option. Due to the unavailability
of UIL, the UIL source code generation functions were not completed in the Graphical
Comp Builder Prototype. The Set Target Language popup will inform the user that UIL
source code generation has not been implemented if the user selects UIL in the Set Target
Language popup.

P

age 18 GCB Documentation

GCB Features

3.6 Help System

The Graphical Comp Builder Prototype contains two levels of online help text to assist the user
during execution of the Prototype. The Graphical Comp Builder Prototype allows the user to select

Help from the main menu bar. Within the main menu bar help, there are three categories of help
text:

+ The user can view help text which describes the conventions of the Work Area. This set of
help text identifies the different mouse button conventions and their function.

* The user can view help text which describes the graphical symbol palette menu. This set of
help text describes the function of the different graphical symbols. The user may use the
mouse to select the graphical symbol for which to display help text.

- The user may also browse through the entire collection of help text. All of the help text for
the Graphical Comp Builder is maintained in a single disk file. The user may browse
through the entire file if desired.

Each of the Graphical Comp Builder Prototype popup windows contains a HELP button in the
lower right hand corner of the popup. This HELP button allows the user to view the help text for
the current popup window.

GCB Documentation

Page 19

GCB Implementation Notes

4.0 GCB Implementation Notes

This section provides the details concerning the implementation of the Graphical Comp Builder
Prototype. The Implementation Notes are contained in three sub-sections:

* Data Files - this sub-section details the various disk files maintained or accessed by the
Graphical Comp Builder Prototype.

* Data Structures - this sub-section details the most important data structures which are
maintained by the Graphical Comp Builder Prototype.

* Module Hiearchy - this sub-section describes the general layout and program flow of the
major modules within the Graphical Comp Builder Prototype.

These sub-sections provide the user with information specific to the implementation of the
Graphical Comp Builder Prototype. To gain a thorough understanding of the Graphical Comp
Builder’s Module Hiearchy and its implementation, it is important to first understand the nature of
X Windows and Motif event driven applications. Refer to X Windows documentation for
information about event driven applications.

4.1 Data Files

The Graphical Comp Builder uses a number of data files in several different directories during
execution. The following subsections describe the purpose of the various data files and also
identifies the directories where the Graphical Comp Builder Prototype expects to locate these data
files.

4.1.1 Position Directory

The Graphical Comp Builder Prototype allows the user to maintain different flight control
positions. Each logical flight control position is maintained in a separate directory. The Position
Directories can be identified by their “.POS” extension. The “ POS” extension is searched for by
the Select Position functions within the Graphical Comp Builder Prototype. The Create Position
functions in the Graphical Comp Builder Prototype will automatically create a Position Directory
with the correct extension. The Position Directories may reside at any place within the Unix file
system. The Position Directory basename will correspond to the Position name. For example, the
Position Directory for the INCO Position would be: INCO.POS.

4.1.2 Comp Directory

The Graphical Comp Builder Prototype creates a subdirectory for each Comp which is created
during execution. The Comp Directories are created as subdirectories of the Position Directory.
Each Comp Directory must end with a “ DIR” extension. The Select Comp functions within the
Graphical Comp Builder Prototype will search for the “.DIR” extension. The Create Comp
functions will automatically create Comp Directories with the proper extension. The Comp
Directory basename will correspond to the Comp name. For example, the Comp Directory for the
PumpSwitch Comp would be: PumpSwitch.DIR.

4.1.3 Comp File
Each Comp Directory will contain a Comp File. The Comp File serves several purposes:
* The Comp File contains the Comp Purpose text.

L IR R]
Page 20 GCB Documentation

GCB Implementation Notes

A

* The Comp File contains a list of the Elements which are maintained in the corresponding
Comp Directory.
* The Comp File contains the Comp’s symbol table.
The Comp File can be identified by its “.CMP” file extension. Only one Comp File exists for each
Comp and only one Comp File should exists within a Comp Directory. The Comp File basename

will correspond to the Comp name. For example, the Comp File name for the PumpSwitch Comp
would be: PumpSwitch.CMP.

The Comp File is automatically maintained by the Graphical Comp Builder Prototype and each
Comp File is composed of three logical parts in the following order:

Comp Purpose Length and Text

List of Elements

Comp Symbol Table

4.1.4 Graphical Element File

Each Comp is composed of one or more Comp Elements. Each Element is maintained in a
Graphical Element File. The Graphical Element files serve several purposes:

* The Graphical Element File contains the Element purpose text and several status indicators
including: Element Creats Date, Element Update Date, and Element Author.

* The Graphical Element File contains the data which identifies the location and type of each
of the graphical symbols within the Element.

* The Graphical Element File contains the expressions and supporting text for each of the
graphical symbols within the Element.

* The Graphical Element File contains the data which identifies the connecting lines which
logically connect the graphical symbols.

The Graphical Element files of a Comp are maintained in the Comp Directory. Graphical Element
files may be identified by their “.GEF" extension. The Graphical Element File basename will
correspond to the Element name. For example, the Graphical Element File name for the
MainPump] Element would be: MainPump1.GEF.

Each Graphical Element File is automatically maintained by the Graphical Comp Builder
Prototype and each file is composed of six logical parts in the following order:

Page 21 GCB Documentation

GCB Implementation Notes

Element Status Values
Element Purpose Length and Text
Element Symbols and Text
Element Line Segments
Element Logical Lines
Element Line Lists

4.1.5 Library Graphical Element Directory

The Graphical Comp Builder Prototype allows the user to maintain a Library of Graphical Element
Files. The Library of Graphical Element Files is maintained in a directory specified by the user via
the User Configuration File (see the User Configuration File section on page 24 for information on
the User Configuration File).

4.1.6 Comp Installation Files

The Graphical Comp Builder Prototype uses a number of files during the generation and linking of
the Comp executable. These files have different functions and reside in several different locations.

4.1.6.1 Comp Header File

During the Comp Installation, a header file (“*.h”) is created in the Comp Directory containing an
“extern” for each of the Comp’s global variables. The Comp Header File basename will correspond
to the Comp name. For example, the Comp Header File name for the PumpSwitch Comp would
be: PumpSwitch.h. The Comp Header File is used during the compilation of the Element C
Language Source Files.

4.1.6.2 skeleton_element.o

The skeleton_element.o file is linked into the Comp executable during the Comp Installation
process. This file resides in the Graphical Comp Builder executable directory. The
skeleton_element.o file contains the object routines which are linked into every executable Comp.
The skeleton_element.o file contains the following routines:

+ process table initialization and maintenance routines
+ data acquisition interface routines
* matrix manipulation routines

4.1.7 Element Installation Files

The Graphical Comp Builder generates a number of files during the Installation of an Element.
These files have different functions but all files are created in the Comp Directory.

4.1.7.1 Element C Language Source File

During an Element’s installation, a C language or MOAL language source file is generated from
the Graphical Element File. The C Language Source File basename will correspond to the Element

L T

Page 22 GCB Documentation

GCB Implementation Notes

name. For example, the C Language Source File name for the MainPumpl Comp Element would
be: MainPumpl.c

4.1.7.2 Element C Language Object File

During an Elements’s installation, a C language object file is generated from the C language source
file. This file is generated automatically by the Graphical Comp Builder Prototype during the
Installation process. This file is produced by executing the workstation’s resident C compiler on
the Element’s C language source file. The C Language Object File is linked into the Comp
Executable which is produced during the Comp Installation process.

4.1.8 PostScript Files

The Graphical Comp Builder Prototype currently supports only PostScript compatible printers.
The PostScript print functions access and create several PostScript files during Element printing.

4.1.8.1 PostScript Template File

The Graphical Comp Builder Prototype uses a template file which contains the functions needed
to generate a PostScript file during the printing of Elements. This PostScript Template File is
named: ps_template and is located in the Graphical Comp Builder Prototype executable’s
directory. The PostScript Template File is not printed by the Graphical Comp Builder Prototype.
It is only used to build the PostScript File which is printed.

4.1.8.2 PostScript File

During the printing of an Element, the PostScript Template File is copied to the Comp Directory.
The Comp Directory copy of the PostScript Template file is then modified to include the Element
specific information. The modified PostScript file is renamed ps_file when it is copied to the Comp
Directory. The PostScript File in the Comp Directory is the file which is printed during report
generation.

4.1.9 Help Text File

The Graphical Comp Builder Prototype help system extracts help text from a disk file called
GCBDoc during execution. This disk file is located in the same directory as the Graphical Comp
Builder Prototype executable. This disk file is a standard ASCII file and may be modified with an
editor. The GCBDoc help text file contains keywords which are used by the Graphical Comp
Builder Prototype to locate the desired section of help text. The keywords in the GCBDoc help text
file correspond to the keywords in the source file: tokens.h. Any change to the GCBDoc help text
keywords or to the list of keywords in the file tokens.h, must be updated in both locations or the
help text may not be selected properly during execution. The keywords in the GCBDoc help text
file are identified by the asterisk in column 1. The GCBDoc help text file should not contain tab
characters.

4.1.10 Error Log File

The Graphical Comp Builder Prototype will generate an Error Log File if errors are detected which
should not occur during normal operation of the Graphical Comp Builder Prototype. The Error Log
File is an ASCII file which contains the date and time the error occurred and a short description of
the error condition. The Graphical Comp Builder Prototype will append new error messages to the
end of the Error Log File as the errors are detected. The user may specify the location of the Error

R

Page 23 GCB Documentation

GCB Implementation Notes

Log File via the User Configuration File (see the User Configuration File section on page 24 for
more information about the User Configuration File).
4.1.11 User Configuration File

The Graphical Comp Builder Prototype contains a number of features that are user configurable
during execution. The state or value of the various options will be automatically saved to a user
specific configuration file when the user exits the Graphical Comp Builder Prototype. The next
time the user executes the Graphical Comp Builder Prototype, the user’s defaults will be restored
to the state or value which the user last selected.

The User Configuration File is saved as an ASCII text file. Each option is saved on a separate line
in the configuration file. Each line contains an option name followed by a corresponding value. The
Graphical Comp Builder Prototype will search several directories at the start of execution to locate
the User Configuration File. The following directories will be searched in the following order to
locate the User Configuration File:

* the current directory
* the user’s home directory

The name of the User Configuration File is always: .Defaults.GCB The following options and
corresponding values are stored in the User Configuration File:

* The directory containing the Library Element GEF filss.

* The type of Element which was last edited by the user. This option may have one of two
values: ELEMENT or LIBRARY_ELEMENT.

* The path and name of the disk file in which to write the Displayer’s output.
* The name of the Comp last edited by the user.

* The name of the Element last edited by the user.

* The path and name of the Error Log file.

* The level of error log reporting. This option may be one of the following: “17, “2”, or “3”,
Error log level “3” is used to specify the most verbose error reporting. Error log level “1”
is the default setting and should be used during normal operations.

* The path and name of the Object Access table.

* The path and name of the last Position in which the user was working.

* The name of the last Position in which the user was working.

* The target language for conde generation. This option may be one of two values: MOAL or

* The path and name of the directory containing the User Defined Functions object files.
* The path and name of the Work Station Global table.

* The state of the Display Symbol toggle. This option may be one of two values: “1”, or “0”.
A value of “1” indicates the Logic Description text should be displayed in the graphical
symbols. A value of “0” indicates the Comp Expression text should be displayed in the
graphical symbols.

Directory path values which are saved to the User Configuration File should not end in a
terminating backslash (“/).

. ———— e ——————— .
Page 24 GCB Documentation

GCB Implementation Notes
h

‘

4.1.12 Displayer Output File

The Graphical Comp Builder Prototype uses a standard “Displayer” to allow the user to view
several operations during execution. See the Displayer section on page 14 for more information on
the function of the Displayer. Each time the Displayer is presented to the user, a copy of the text
which is displayed on the screen is also written 1o a disk file. This file may be printed, copied, or
edited by the user. This file is created each time the Displayer is presented to the user, and the
previous copy of the file is deleted. The user may specify the location and name of the Displayer
Output File via the User Configuration File.

4.1.13 User Defined Functions Directory and Files

The Graphical Comp Builder Prototype allows the user to make calls to C language object files
which were created outside of the Graphical Comp Builder Prototype. These User Defined
Functions are located in a directory specified by the user via the User Configuration File. The User
Defined Function names must begin with “FN_". The Graphical Comp Builder Prototype will
display to the user a list of the C language object files which begin with the proper format during
the construction of IF and SET symbol expressions. The Comp Installation process will locate the
User Defined Function object files during the linking of the Comp executable.

4.1.14 Object Access Table

The Graphical Comp Builder Prototype will access an Object Access Table during the Comp
Validation process. The Object Access Table should contain a list of available Objects and their
associated data types.

4.1.15 Work Station Global Table

The Graphical Comp Builder Prototype will access a Work Station Global Table during the Comp
Validation process. The Work Station Global Table should contain a list of available Work Station
Globals and their associated data types.

Page 25 GCB Documentation

GCB Implementation Notes

S R

4.2 Data Structures

The Graphical Comp Builder Prototype maintains a number of different data structures during
execution. The following subsections will describe the more important data structures maintained
by the Graphical Comp Builder Prototype.

4.2.1 Symbol Array

Each graphical symbol of an Element is maintained in the Symbol Array while an Element is active
in the Work Area. The Symbol Array is a fixed length array of Symbol structures. The Symbol
structure and Symbol Array are defined in gcb.h. All the information for a graphical symbol is
available via fields or pointers contained in the Symbol structure, including the following:

» The expressions contained in each graphical symbol are available via pointers in the
Symbol structure. The data space for the expressions is malloc()’ed as needed. The Symbol
structure does not contain any data space for the expressions within the Symbol structure.

+ Pointers to the connecting lines which enter and exit the Symbol are contained in the
Symbol structure. The line information is not contained within the Symbol structure. The
Symbol structure contains only pointers to Line Lists and Line structures which are
maintained separate from the Symbol structure.

+ The coordinates relative to the Work Area and dimensions of the Symbol are contained in
the Symbol structure.

Almost all of the functions which manipulate the graphical symbols in the Work Area maintain the
Symbol Array of structures due to the fact that almost every aspect of each graphical symbol is
specified in the Symbol structure.

4.2.2 Cell Map

The Graphical Comp Builder Prototype utilizes a logical grid of cells as an efficient and powerful
method of maintaining the Work Area. See the Graphical Symbol Placement Model section on
page 4 for more information about the Cell Map concept.

The Work Area Cell Map is implemented as a two dimension array of Cell Structures. Each Cell
Structure contains a type flag and a pointer. The type flag indicates if the Cell is occupied and may
have one of three values: Symbol Cell, Line Cell, or vacant. If the Cell is not vacant, the pointer
will point to the graphical symbol structure or line structure which occupies the cell. The Cell
Structure definition and the double dimensioned array of Cell Structures is contained in gcb.h.

4.2.3 Line Structures

The Graphical Comp Builder Prototype allows the user to logically connect the graphical symbols
in the Work Area. The Element builder determines the program flow of the Element by the manner
in which the graphical symbols are connected. A collection of structures are maintained by the
Graphical Comp Builder Prototype to record the logical lines which connect symbols. There are
three main Line Structures which are maintained by the Graphical Comp Builder Prototype
software:

» The LineSeg structure is the most basic element of the connecting lines between symbols.
A LineSeg structure maintains the information for a single line segment from one point to
another point. A logical connecting line between two graphical symbols may be composed
of multiple line segments. Each orthogonal change in direction starts another line segment.

Page 26 GCB Documentation

GCB Implementation Notes
L R N ‘

Each LineSeg structure contains a pointer to the next segment in the logical line if one
exists. Each LineSeg structure contains the information needed to draw the line, including
the information to draw the line segment’s arrow head if one is at the end of the line
segment.

* The Line structure represents a logical connecting line between two graphical symbols.
Each Line structure contains a pointer to the first line segment of the logical line. The
remaining segments of the logical line are available via a pointer in the LineSeg structure
which points to the next line segment in the logical line. Each Line structure also contains
a pointer to the two graphical symbol entries in the Symbol Array which the line connects.

The LineList structure represents a list of separate logical lines. The LineList structure is
the highest level line structure. Each LineList structure contains a linked list of pointers to
logical Line structures. LineList structures are used to record the list of lines which enter a
graphical symbol. Each symbol may have only one or two lines which exit the symbol, but
many logical lines may enter a symbol, and the LineList structure is used to record each of
these lines.

Each of the three Line Structures also includes a key field. The key field is used to record the line
information of an Element File to disk and to restore an Element’s lines during the reading of an
Element File from disk. The key field of each structure is set to 2 unique number before an Element
File is written to disk. The unique numbers in the key fields are then used to reconstruct the
interwoven network of pointers durin g the reading of an Element File from disk.

The various Line Structures are dynamically allocated as needed to maintain the Element in the
Work Area. The Line Structures are defined in geb.h.

4.2.4 Symbol Table

The Graphical Comp Builder Prototype maintains a Symbol Table of the identifiers and variables
which comprise the expressions within the graphical symbols of a Comp. The following entities
are maintained in the Symbol Table for each Comp:

* The name of each Element which comprises the Comp is maintained in the Symbol Table.
* The name of each local variable within an Element 1s maintained in the Symbol Table.
* The name of each global variable within a Comp is maintained in the Symbol Table.

* The name of each Object and each Work Station Parameter is maintained in the Symbol
Table.

* The name of each User Defined Function and the name of each intrinsic function (cos, tan,
sqrt, etc.) is maintained in the Symbol Table. The Symbol Table contains an entry for every
intrinsic function, even if it is not referenced in the Comp. Only the names of the User

Defined Functions which are referenced within a Comp are maintained in the Symbol
Table.

The Symbol Table contains the following information about each entry:

* The name of each symbol is maintained in the Symbol Table.

* The use count of each symbol is maintained within the Symbol Table. The use count is a

count of the number of times each variable or Element name is referenced within all of the
Elements of the Comp.

R e \
Page 27 GCB Documentation

GCB Implementation Notes

* The attributes of each symbol are maintained within the Symbol Table. The attributes field
is implemented as a collection of bit masks. The bits in the atributes field of a Symbol
Table entry indicate various information including: variable data type and variable scope.
The Installation status of Elements is also maintained in the attributes field of the Symbol
Table entry.

* The number of rows and columns of non-scalar variables is also maintained in the Symbol
Table.

A list of local variables is maintained for each Element name. The local variables of an Element
are maintained as a list of children of the Element. In this way, the local variables of an Element
are tied to the Element. Different Elements within a Comp may have local variables of the same
name. Each time a local variable is accessed in the Symbol Table, the name of the Element in which
the local variable is defined is supplied to ensure the correct local variable is accessed.

Global variables are maintained in the root of the Symbol Table and have no parent due to the fact
that global variables can be accessed from any Element within a Comp.

‘The Comp Symbol Table is implemented as a linked list of structures. The Symbol Table Structure
definition is contained in symbol.h.

Page 28 GCB Documentation

GCB Program Flow

— N E————

4.3 GCB Program Flow

A high level program flow diagram for the Graphical Comp Builder Prototype is contained in the
figure below:

initialize

Section 1 vars and X

callback
routine

Section2 (XtMainLoop

Section 3

At this level, the program flow appears to be very simple due to the program structure that is typical
of X Windows and Motif based applications. There are only three main areas of program flow

within most X Windows programs and the Graphical Comp Builder Prototype is no exception. The
three main areas of program flow and their function are:

* The first section of a typical X Windows program contains the establishment of the
connection to the X Wincows server and the definition of the X-based user interface.

* The second section of a typical X Windows program is the main X Windows event loop.
This code is usually linked into the application and is not written as part of the application.
The X Windows event loop sends and receives events to and from the X Windows server.
The X Windows event loop is called at the start of the application and remains in control
of the application until the program is terminated. The X Windows event loop will call
various callback routines based on the events which occur in the X server.

Page 29 GCB Documentation

GCB Program Flow

SR — —

+ The third section of a typical X Windows program contains the callback routines. This
section of code is where most application specific processing is performed. The majority of
the Graphical Comp Builder specific software is contained within callback routines or is
called by the callback routines.

Each X Windows program usually contains these three sections of code. The relative size and
complexity of these three sections varies between applications. In the case of the Graphical Comp
Builder Prototype, the callback routines section of the application comprises approximately 90%
of the software in the Prototype. The following two sections will describe in greater detail the first
and third sections (initialization and callback routines). The second section is generic to all X
Windows applications and is not specific to Graphical Comp Builder Prototype. The reader is
referred to the X Windows documentation for more information about the second section.

4.3.1 Section 1 - Initialization

The Initialization Section of the Graphical Comp Builder Prototype comprises approximately 10%
of the code in the Prototype. The initialization routines perform the following functions in the
following order:

* The Initialization routines contained in gcb.c setup a collection of signal handlers to trap
desired Unix OS events. The Control-C signal is an example of the signals which are
trapped.

+ The Initialization routines contained in gcb.c establish a connection to the X server and
open the X Display.

* The Initialization routines contained in init_X.c construct the X Windows interface. The
Graphical Comp Builder Prototype builds all main windows and popup windows during
initialization.

« The Initialize routines contained in init_vars.c and utils.c initialize all global variables,
including the graphical symbol array and the Work Area cell map. The Initialize routines
also read the user’s Configuration File and set the variables identified in the User
Configuration File to the specified values.

4.3.2 Section 3 - Callback Routines

The X Windows callback routines and the routines called by the callback routines, comprise about
90% of the code in the Graphical Comp Builder Prototype. Due to the event driven nature of an X
Windows based application, these callback routines are only called as the result of a user’s action
within the X Windows interface. Almost every trace of a sequence of events within the Graphical
Comp Builder Prototype begins in the source file: init_X.c. It is within this file that the majority of
the interface is defined and the event handlers installed.

The following is an example of the sequence of events and the typical program flow that occurs
during most operations performed by the user within the Graphical Comp Builder Prototype. The
following example shows the sequence of events and the program flow that occurs when the user
selects and reads in an existing Element file.

Page 30 GCB Documentation

GCB Program Flow

) Source
Event Resulting Program Flow .
File
User selects the | The Element pulldown menu is displayed. This menu | init_X.c
Element menu. was defired during the building of the user interface.

User selects the | The callback routine cbr_elem_popup() was installed | init_X.c
“Select Element” | during the building of the user interface for this event
menu button. and is called.

The callback routine cbr_elem_popup() makes a call to element_file.c
load_element_list() to load the Element selection list
of the “Select Element” popup before the popup is
displayed.

The load_element_list() routine makes a call to | comp_file.c
read_comp_list() to read the list of Element names
from the Comp file.

The callback routine cbr_elem_popup() makes a call to element_file.c
display the “Select Element” popup to the user.

The “Select Element” popup is displayed to the user. popup built in
The “Select Element” popup was defined during the | element_file.c
building of the user interface in init_X.c. A call was
made from init X.c to build_sel_elem_popup() in
element_file.c to build the “Select Element” popup
during the initialization of the user interface.

The callback routine for the Element selection list is | element_file.c
called. The callback routine cbr_el_selected() was
installed when the “Select Element” popup was built in
build_sel_elem_popup().

User selects an| The callback routine cbr_el_selected() determines the | element_file.
Element name | name of the Element the user wants to read and then
from the list. makes a call to read_element_file() to read the
specified Element file from disk into the Graphical
Comp Builder Prototype.

Once the Element file has been read from disk, control
returns to the X Windows main event loop and the
cycle begins again.

Page 31 GCB Documentation

GCB Program Flow

e S

The preceding scenario is typical of each operation the user performs within the Graphical Comp
Builder Prototype. For each operation the main program flow is basically the same.

Page 32 GCB Documentation

Appendix A

Extract

This comp is performed during the
extraction of the HAB satellite
from the payload bar. This comp
will monitor the status of the

RMS pumps to make sure they remain
within nominal and critical limits.

Elements
CheckPumpl

CheckPump?2

Glokal Variables

V873457E

GV_cont

Installed

yes

no

Type Dimensions
int 1

int 1

2
2

Use Count

Page 1

Position: RMS Purpose:

Comp: Extract This element sets up a loop which

Element Name: RootElement tests the two main pumps which
drive the RMS. The loop continue

Element Type: ELEMENT flag is not altered within this

Author: Timothy J. Barton Comp. The user can control the

: Comp from the Comp Manager.

Created: 08/25/1991

Last Update: 08/27/1991

Status: Complete

COATINUS until the
eRtrastien finienes

coro
Cheok Pumpi

Page 2

Logical

Description

Comp

E- ~ession

T

Comment

continue unt:il the
extraction finishnes

continue until the
extraction finishes

GV_cont :=1

Initialize the loop control variable to be TRUE.

This loop

should run forever. This comp is stopped by the user via
the Comp lManager once the extraction has been completed.

Page 3

gical

:scription

mp
¢gpr~ssion

~—

ommrent

check the centinue flag.

check the continue flag.

GV_cont > 0

Check to make sure we should "go around’ and perform
the tests again.

Page 4

Position:
Comp:

Element Name:
Element Type:

Author:
Created:
Last Update:
Status:

RMS

Extract
CheckPumpl
ELEMENT
Jerry Ratner
08/27/1991
08/27/1991
Complete

Purpose:

This element checks the Pumpl
pressures. This element checks
the critical high and critical
low limits. This element is
Set up to check for Rev. 2 type
pumps

G

o<k Puspl preseure nigy TRVE
limic.

Pumsl preseurs critical hign
liae ¢

raLse

Puspl sressvre critical lew
l1mit enceeded)

Page 5

Check Pumpl pressure hignh
limit.

S

Logical Check Pumpl pressure high limit.

Description

Comp V873457E > 125

F ression

—

Comment Check to see if the Pumpl pressure has eXceeded the critical
high limit. The high limit for the zev. 2 pumps used on
Columbia and Discovery is 125 psi.
The Rev. 1 Pumps have critical high >:imit of 115 psi.

Page ¢

Check Pumpl bressure low
limic,

Logical Check Pumpl pressure low limit.
Description
comp V873457E < 40

¥ =2ssion

mment Check to see if the Pumpl Pressure has gone below the
Critical low limit. The low limit for the Rev. 2 pumps
used on Columbia and Discovery is 4¢ psi,

The Rev. 1 pPumps have critical low limit of 60 psi.

Page 7

Appendix B

Position:
Comp:

Element Name:
Element Type:

Author:
Created:
Last Update:
Status:

RMS

Extract
CheckPumpl
ELEMENT
Jerry Ratner
08/27/1991
08/27/1991
Complete

Purpose:

This element checks the Pumpl
Pressures. This element checks
the critical high and critical
low limits. This element is
set up to check for Rev. 2 type
pumps

D

134378 > 123 TRUE

aLss

Pursl preseurs eritical hign

Limit escesand:

148 < a8 TRUR

rause

£

Pumpl preseurs eritical Lew
Limit eacesssd(

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 6220 Culebra Road
San Antonio, Texas 78228-0510

ADA INVESTIGATION

NASA Grant No. NAG 9-435
SwRI Project No. 05-3531

Prepared by:
Timothy J. Barton

Prepared for:
NASA
Johnson Space Center
Houston TX 77058

September 5, 1991

Ada User’s Symposium
L

1.0 Investigation of Ada for Control Center Software

Investigation has been conducted to determine the availability and suitability of the Ada
programming language for the development of future control center type software. The Space
Station Freedom Project (SSFP) has identified Ada as the desired programming language for the
development of Space Station Control Center (SSCC) software systems. The Department of
Defense (DoD) has mandated Ada as the programming language for all new DoD software. Due
to these mandates and related directions within private industry, an investigation of Ada was
necessary.

1.1 Ada User’s Symposium

The first step in the investigation into Ada was to determine if the Ada programming language was
receiving acceptance within NASA. The Ada programming language had a well publicized birth
and was purported to be the High Order Language (HOL) of the 1980s and 1990s. During the last
several years, Ada has received less publicity. It was important to determine if Ada was slipping
into obscurity or quietly gaining acceptance, before significant effort was expended using Ada. The
first step was to determine if it was still appropriate to develop an Ada version of the Graphical
Comp Builder.

The NASA Ada User’s Symposium was the ideal event to determine NASA’s commitment to Ada.
The presenters’ experiences with current Ada compilers also provided data on the ability of Ada
compilers to produce a Graphical Comp Builder Prototype with acceptable performance.

The Third Annual NASA Ada User’s Symposium was held at NASA-JSC’s Gilruth Center on
November 6, 1990. The Ada Symposium directly answered the two main questions about Ada:

. Is Ada gaining acceptance?
. Will Ada executable’s performance be acceptable?

The first question was answered immediately. The first hour and a half was a discussion about the
Ada projects at the various NASA centers. Representatives from Goddard, JPL, Langley, JSC, and
LeRC (Lewis Research Center) discussed the various projects using Ada and the Ada development
labs at their respective center. A short summary of these projects is included.

The second question was answered through the course of the entire day. The symposium was not
just a group of Ada fanatics who are oblivious to the merits of C and FORTRAN and who think
that Ada should be used in every piece of software that is written. Almost all of the presenters
discussed the development and performance impacts caused by using Ada in their project instead
of FORTRAN. In most cases, a performance comparison table to FORTRAN was presented which
clearly indicated the performance of the Ada version. The audience and the presenters were very
objective and very honest in their discussions about Ada.
1.1.1 NASA Center Status Reports
The first part of the symposium was a status report from the following NASA centers:

. Johnson Space Center

. Goddard Space Flight Center

. Langley Research Center

. Lewis Research Center

. Jet Propulsion Laboratory

Page 1 Ada Investigation

Ada User’s Symposium

. JSC
A short description of the projects at each center is included.

1.1.1.1 JSC

Most of the Ada work being done at JSC is in the SSCC and SSF Training Facility. The SSE which
is being done by Lockeed is all in Ada and they are projecting that 1 million lines of Ada will be
written before SSE is completed. OADP and OPAS are two projects within the SSCC that are using
Ada. Some other projects at JSC are:

. STA- Shuttle Training Aircraft
. COMPASS - Computer Aided Scheduler
. SMSS - F16 Stores Management System Simulator
. JAEL - JSC Avionics Engineering Lab
The JSC campus HVAC system is computer controlled using Ada.

1.1.1.2 GSFC

The Flight Dynamics Division at Goddard is using Ada very extensively. In 1984 less than 1% of
all software developed at Goddard was in Ada. They estimate that more than 10% of all software
developed in 1990 at Goddard will be in Ada. Goddard is probably the most committed of the
NASA centers to Ada and they have extensive statistics to prove their move to Ada. The big
projects at Goddard are:

. FTS - Flight Telerobotic Servicer - all software in Ada

. STGT - Second TDRS Ground Terminal - all software in Ada

. HST - Hubble Space Telescope interface simulator

. EUVE - Extreme Uluaviolet Explorer - spacecraft flight software

1.1.1.3 LaRC

Some of the projects at Langley are:
. CSI- Control Structures Interaction - shuttle bay instrumentation platform
. AFE- Aeroassist Flight Experiment

Langley is very big on Ada because they usually have very short turn-around times for their
projects and they have found that Ada is faster to develop in than FORTRAN due to high reuse of
software. It takes a software engineer longer to write an Ada module than a FORTRAN module,
but the Ada module is often reused on other projects, whereas the FORTRAN modules are often
rewritten due to the tighter coupling of the module to the particular program.

1.1.1.4 LeRC

The Electrical Systems Division of Lewis Research Center is building the Power Management and
Distribution controller for SSFP. All the code in the Power Management system is in Ada and they
are very pleased. As an example, the power on the SSF recently changed from AC to DC, and the
Lewis software developers were very pleased with the maintainability of their Ada software.

NN

Page 2 Ada Investigation

Ada User’s Symposium
“ “

1.1.1.5 JPL

JPL is one NASA center where very little Ada work is going on. JPL is not using Ada due to several
factors. The staff at JPL feel there are not enou gh people with Ada experience so they see Ada as
a risk item. JPL probes have had great success and they are afraid to abandon FORTRAN and
assembler. The developers at JPL view Ada as big and slow, and their probes are small and have
limited resources.

1.1.2 Symposium Speakers

The rest of the day, was devoted to speakers from the various NASA centers discussing their
particular project in detail. A summary of some of the projects that were discussed is included.

1.1.2.1 STGT - Second TDRS Ground Terminal

This is a very large real-time project (12 VAX 63XX and 28 workstations) being done by General
Electric (GE). They estimate that 490,000 lines of Ada will be written before STGT is completed.
GE is very impressed with Ada’s ability to aid in the management and development of a large
software project. STGT is being completed ahead of schedule and it works. One of Ada’s strengths
in GE’s opinion, is the reusability of Ada code. During development of one portion of STGT,
30,000 lines out of 90,000 total lines of Ada were reused from another portion of STGT. For one
of the simulators, 16 were developed in all, Ada required 5,000 lines of code whereas 40,000 lines
of FORTRAN were needed to write the same exact simulator.

1.1.2.2 STA - Shuttle Training Aircraft

NASA-JSC has a Gulfstream airplane which can be computer controlled to fly like the shuttle
below 35,000 feet. STA is used by pilots to practice shuttle landings and descent. STA uses Sperry
and Motorola processors in its Guidance Control Computer (GCC) to control the win g surfaces and
engines to enable the Gulfstream to exhibit shuttle-like flight characteristics. The STA was
originally programmed completely in assembly language. Most of the software has been converted
to Ada, and soon all of the code will have been converted to Ada. This project has extensive timing
data comparing FORTRAN to Ada. Not surprisingly, FORTRAN is faster than Ada, but only about
15% faster. The group which is responsible for STA feel that their Ada programs are definitely
much easier to develop and maintain. Their theory is: software is expensive, hardware is cheap,
buy fast enough hardware to support the proper software development environment (Ada) and
you’ll save money. The STA group uses Ready Systems ARTX Real-Time Executive and
extensions to Ada.

1.1.2.3 JAEL

The JSC Avionics Engineering Lab (JAEL) is responsible for testing the shuttle’s avionics
hardware:

. GPC- General Purpose Computers
. MDM- Multiplexor Demultiplexor
. MTU- Master Time Unit
. MCDS- Multi-purpose Display System
Even though this group is shuttle related and has no Ada mandate, they now use Ada for all their

development because they have had “good past experiences” with Ada. They feel Ada has helped
them deliver their systems on-time as opposed to FORTRAN.

Page 3 Ada Investigation

Hartstone Benchmark
—

1.1.3 General Highlights
The following are some short excerpts from the symposium:

. The SSFP has been losing a lot of money for various projects through “scrubs” lately,
but Ada and projects using Ada have fared very well.

. Interestingly, Ada was always compared to FORTRAN during the symposium. The C
language was only mentioned once or twice.

. Many of the embedded system projects utilize the military’s 1750A microprocessor.
There were several very positive comments regarding the Ada development
environments available for the 1750A microprocessor.

. Many of the real-time projects used run-time environments to improve real-time
performance and these environments provide additional interprocess communication
mechanisms other than the Ada rendezvous.

1.1.4 Non-NASA Highlights
The following are several short excerpts from the symposium regarding projects outside of NASA:
. There are over 500 validated Ada compilers.

. The B2 (stealth bomber) trainer was developed entirely in Ada by Link, and the Boeing
747-400 contains approximately 500,000 lines of Ada in its fly-by-wire control
systems.

. Much of the software in the Sea Wolf ASW missile was written in Ada.

. Volvo has completed several projects using Ada including all of the software to control
their assembly plant Automatic Guided Vehicles (AGV).

. On Monday, November 5, 1990, Congress signed legislation which states that the
Secretary of Defense must now sign waivers if Ada is not going to be used on a military
project. Waivers will only be granted if it can be demonstrated that another language
will be more cost effective over the entire life-cycle of the project. Ada has done very
well in the past in software life-cycle cost studies, and the new legislation may increase
the number of DOD projects which use Ada.

1.2 Hartstone Benchmark

The second step in the investigation of Ada focused on the relative performance of Ada programs
on two workstations often used in control center environments. The Graphical Comp Builder
Prototype is a very user interactive program. The ability of the program to respond quickly to user
actions is paramount to the program’s acceptance by users. The performance of the Graphical
Comp Builder Prototype is most critical during graphical symbol placement in the large work area.
The C language version of the Graphical Comp Builder Prototype has been designed and
implemented to ensure smooth response to mouse movements in the work area. An Ada version of
the Graphical Comp Builder Prototype will have to perform symbol placement operations with
equally acceptable performance.

The Hartstone Benchmark is being utilized to provide information regarding the performance of
the executables produced by various Ada compilers. The Hartstone (Hard Real Time) Benchmark
is an Ada program designed by the Software Engineering Institute (SEI) for the USAF which is
used to measure a computer system’s ability to support a collection of real-time tasks. The

Page 4 Ada Investigation

Hartstone Benchmark
‘ \ R

Hartstone Benchmark is primarily intended to provide information about a system’s ability to

perform real-time tasks and about the performance of the executables produced by different

one Ada compiler for either the Sun or Masscomp. Should a second Ada compiler become
available for either the Sun or Masscomp, then comparison data of executables on the same system
will be provided.

1.2.1 Hartstone Benchmark Design

. Experiment 3 gradually increases the computational work (number of Whetstones)

which must be completed within a set time period. Experiment 3 is ap indicator of a
system’s compute performance for a set time period.

. Experiment 4 gradually adds new tasks to the system. Experiment 4 is an indicator of a
system’s ability to support an increasing number of tasks.

The Hartstone Benchmark is being used to determine on a general scale the performance
characteristics of Ada executables on a Masscomp and a Sun.

Page § Ada Investigation

Hartstone Benchmark

The Hartstone Benchmark was executed on a Masscomp 6350 and a Sun 4/65 (SPARC Station 1+).
Both machines are mid-level Unix workstations from the product lines of their respective
manufacturers. The two workstations which were benchmarked share many of the same features:

. Unix-based workstation

. 16 megabytes of memory

. X Windows support

. SCSI peripherals (hard drive, tape drive, floppy drive)
. networked via ethernet (NFS and NIS client)

The two workstations are also very different in some respects. Due to the nature of the real-time
Hartstone Benchmark, the Real-Time Unix (RTU) of the Masscomp would typically be a benefit
when compared to the Sun’s version of Unix (SunOS). The Hartstone Ada source code has been
written with portability as a prime objective so the RTU real-time directives available to an Ada
program were not employed. Only the real-time features implicitly utilized in RTU were
employed. The following are some of the other differences between the two workstations:

. RISC based Sun (SPARC) vs. CISC based Masscomp (68030)

. desktop Sun (single system board employing high integration, i.e. memory) vs.
deskside Masscomp (multiboard system, i.e. separate memory and graphics boards)

. Verdix Sun Ada compiler vs. Masscomp C3Ada compiler

The resulting benchmark results have been interpreted in a very general fashion to make
allowances for the differences in the two workstation’s hardware and operating system software.
The results given in this report will be general statements based on the interpretation of the average
results of the benchmark. The authors of the Hartstone Benchmark are quick to point out the fact
that a large number of independent variables affect the results of the benchmark, and that the data
produced by the benchmark should be used to demonstrate the variations that are possible. The
specific Hartstone Benchmark results should only be directly compared in situations where most
independent variables can be controlled. For this report, a direct comparison is not feasible. For
both workstations, the results could be either improved or degraded with optimization and tuning
for the particular workstation, use of the RTU real-time features within the C3Ada compiler are an
example.

1.2.3 Hartstone Benchmark Results

The complete reports produced by the Hartstone Benchmark for both the Sun and the Masscomp
are included in Appendix E of this report and a summary of the results is included in Figures 1, 2,
3 and 4. Where possible, the machines were configured as similarly as possible. Each machine was
configured as follows during the execution of the benchmark:

. multiuser mode
. benchmark was executed as “root”
. disconnected from ethernet

A single copy of the Hartstone Benchmark source code was used to build each respective
executable. The complete set of experiments (1-4) was executed 3 times for each machine. The
results of each 3 runs are included in the table in the order in which they were run.

/

Page 6 Ada Investigation

Hartstone Benchmark

The Hartstone Benchmark was executed on both machines using the same baseline test; in each
Experiment the same amount of computational workload was requested during the first test and
subsequent increments in workload were also the same for the two machines. Several general
observations can be made which are valid for all four of the experiments:

Due to the controlled environment in which the experiments were conducted, the results
for each three runs of each experiment were very close if not exactly the same. Slight
variations are expected due to occasional system functions such as system clock and
“cron” tasks. The Very narrow variations exhibited in most experiment results is an
indication of very few external factors affecting the experiment results.

The more recently developed RISC microprocessor used in the Sun delivers better raw
compute performance than the older CISC in the Masscomp. In the tables included in
Figures 1-4, the right most column identifies the number of Whetstones which were
calculated by one task in one second at the start of the experiment. This number is
identified as “raw KWIPS”. The number of KWIPS completed by a collection of tasks

The greater compute performance of the Sun ensures a finer scale in reporting of
performance for the Sun than the Masscomp. This is evidenced by the “step factor”
which is identified for each experiment in Figures 1-4. The “step factor” identifies at

s lower performance, the new loads added to the Masscomp were a greater
burden than to the Sun. The “step factor” identifies the ratio of loading between the
Masscomp and the Sun. The “step factor” is computed by dividing the “raw KWIPS”
(100% utilization) by the compute load “KWIPS”. The “step factor” for the Sun was
consistently 1/2 that of the Masscomp due to the greater raw compute performance.

Due to the differences in compute performance and the resulting differences in “step
factor”, the number of tests completed by each machine may not be directly compared

variation in the number of tests completed is great, other factors may be studied to
determine the nature of the test. The “percent CPU” loading indicator may be used in
these cases to determine if the Masscomp is performing as expected when compared to
the Sun.

Page 7

Ada Investigation

Hartstone Benchmark

’

These factors should be kept in mind when studying the Hartstone Benchmark results. Given the
preceding backdrop, the following observations have been made:

Experiment 1 is a good indicator of a system’s ability to task switch five tasks with one
task increasingly adding task switch overhead. The fifth task gradually increases its
frequency as its time period decreases. In this experiment, the Masscomp delivered
similar performance to the Sun even though it has less raw compute performance. This
may indicate that for the task set in Experiment 1 the Masscomp’s Real-Time Unix is
an advantage over Sun OS and other BSD Unix implementations even when RTU’s
explicit real-time features are not utilized. Investigation of Experiment 3 would indicate
the opposite is true. For the task set in Experiment 3, the Sun delivered much better
performance when compared to the Masscomp.

The results of Experiment 1 for the Masscomp and the Sun are consistent with the
findings often observed at the SEI; the highest priority task (task number 5) misses
deadlines before the lower priority tasks. Both the Masscomp and Sun missed deadlines
in task 5 in Experiment 1. Due to the priorities assigned by the Hartstone Benchmark,
the opposite scenario should be the case. The lower priority tasks should miss their
deadlines first as they are increasingly preempted by higher priority tasks. The SEI is
currently researching the cause of the “Inverted Task Set Breakdown Pattern” which
was exhibited by both the Sun and Masscomp.

The Masscomp and its RTU operating system produced very good CPU utilization
figures when compared to the Sun for the Experiment 1 task set. The Masscomp
consistently delivered approximately 17% CPU utilization as compared to the Sun
which delivered approximately 8% CPU utilization.

The Masscomp also performed very well in Experiment 2. Once again, the Masscomp
delivered a much higher CPU utilization before deadlines were missed. Although the
Masscomp delivered higher CPU utilization, the Sun delivered higher performance
given its greater compute performance from its RISC microprocessor.

The Sun performed exceptionally well during Experiment 3 when it achieved 4102
KWIPS, or approximately 90% of CPU utilization. The Sun also displayed a very even
distribution of tasks which missed their deadlines as the system was loaded. In
Experiment 1, both the Masscomp and the Sun missed deadlines in the highest priority
task. This is not the behavior which is expected or desired. As the load on the Sun
increased during Experiment 3, the lower priority tasks began to miss deadlines while
the higher priority tasks missed very few or no deadlines. The task set used in
Experiment 3 appears to be very well suited for the Sun.

There were few surprises in the results of Experiment 4. Once again, the Masscomp
delivered very good CPU utilization. Once again, the faster Sun CPU delivered higher
performance than the Masscomp. As in Experiment 3, the Sun delivered very good
distribution of missed deadlines across lower priority tasks as the system was loaded.
As the Masscomp CPU was loaded, it did very poorly in distributing missed deadlines
across lower priority tasks. In the last test attempted by the Masscomp, the highest
priority task was the only task to miss deadlines.

The Hartstone Benchmark has provided insights into the relative strengths and weaknesses of the
two hardware and software systems tested. The Hartstone Benchmark clearly showed the compute

#—

Page 8

Ada Investigation

Hartstone Benchmark

workstations.

h
Page 9 Ada Investigation

Hartstone Benchmark

#

Experiment 1 - Last test with no missed/skipped deadlines

Test # Percent CPU Task5 Freq. Step Size KWIPS(raw)

Masscomp 1 16.32% 32Hz 1.63% 1960.79
1 16.32% 32Hz 1.63% 1960.79

1 15.31% 32Hz 1.53% 2090.62

Sun 2 7.86% 48Hz 1% 4476.28

1 7.17% 32Hz 12% 4464.29

1 7.15% 32Hz 1% 4476.28

Experiment 1 - First test with missed/skipped deadlines

Test# Percent CPU Task5 Freq. Step Size KWIPS(raw)

Masscomp 2 17.95% 48Hz 1.63% 1960.79
2 17.95% 48Hz 1.63% 1960.79

2 16.84% 48Hz 1.53% 2090.62

Sun 3 8.58% 64Hz a1 4476.28

2 7.88% 48Hz 72 4464.29

2 7.86% 48Hz 71 4476.28

Experiment 1 - Test with 50 or more missed/skipped deadlines

Test # Percent CPU TaskS Freq. Step Size KWIPS (raw)

Masscomp 2 17.95% 48Hz 1.63% 1960.79
2 17.95% 48Hz 1.63% 1960.79
2 16.84% 48Hz 1.53% 2090.62
Sun 3 8.58% 64Hz 71 4476.28
8.60% 64Hz 72 4464.29
3 8.58% 64Hz 71 4476.28

Figure 1

P R

Page 10 Ada Investigation

Hartstone Benchmark
\

Experiment 2 - Last test with no missed/skipped deadlines

Test # Percent CPU KWIPS Step Size KWIPS(raw)

Masscomp 2 17.48% 352 1.59% 2013.42
19.58% 384 1.63% 1960.79

18.50% 384 1.54% 2076.11

Sun 7 11.73% 512 73% 436491

6 10.72% 480 1% 4476.28

6 10.72% 480 1% 4476.28

Experiment 2 - First test with missed/skipped deadlines

Test # Percent CPU KWIPS Step Size KWIPS(raw)

Masscomp 1 15.89% 320 1.59% 2013.42
4 21.22% 416 1.63% 1960.79

2 16.95% 352 1.54% 2076.11

Sun 2 8.06% 352 73 4364.91
7.15% 320 71 4476.28

3 8.58% 384 71 4476.28

Experiment 2 - Test with 50 or more missed/skipped deadlines

Test # Percent CPU KWIPS Step Size KWIPS(raw)

Masscomp 4 20.66% 416 1.59% 2013.42
4 21.22% 416 1.63% 1960.79
4 20.04% 416 1.54% 2076.11
Sun 8 12.46% 544 73 436491
12.15% 544 71 4476.28
12.15% 544 71 4476.28

Figure 2

Page 11 Ada Investigation

Hartstone Benchmark
_

Experiment 3 - Last test with no missed/skipped deadlines

Test # Percent CPU KWIPS Step Size KWIPS (raw)

Masscomp 7 35.29% 692 3.16% 1960.79
6 31.29% 630 3.08% 2013.42

9 39.03% 816 2.97% 2090.60

Sun 55 84.84% 3668 1.43% 4323.39
58 86.10% 3854 1.39% 4476.28

58 86.33% 3854 1.39% 4464.29

Experiment 3 - First test with missed/skipped deadlines

Test # Percent CPU KWIPS Step Size KWIPS(raw)

Masscomp 3 22.64% 444 3.16% 1960.79
3 22.05% 444 3.08% 2013.42

10 42.00% 878 2.97% 2090.60

Sun 2 8.84% 382 1.43% 4323.39
10 19.61% 878 1.39% 4476.28

8 16.89% 754 1.39% 4464.29

Experimer.t 3 - Test with 50 or more missed/skipped deadlines

Test # Fercent CPU KWIPS Step Size KWIPS(raw)

Masscomp 9 41.62% 816 3.16% 1960.79
8 37.45% 754 3.08% 2013.42
12 47.93% 1002 2.97% 2090.60
Sun 62 94.88% 4102 1.43% 4323.39
62 91.64% 4102 1.39% 4476.28
62 91.88% 4102 1.39% 4464.29
Figure 3
#

Page 12 Ada Investigation

Hartstone Benchmark

Experiment 4 - Last test with no missed/skipped deadlines

Test # Percent CPU Tasks Step Size KWIPS (raw)
Masscomp 3 22.25% 7 3.18% 2013.42
8 39.17% 12 3.26% 1960.79
13 52.04% 17 3.06% 2090.60
Sun 33 52.90% 37 1.43% 4476.28
34 54.33% 38 1.43% 4476.28
34 54.33% 38 1.43% 4476.28
Experiment 4 - First test with missed/skipped deadlines
Test # Percent CPU Tasks Step Size KWIPS(raw)
Masscomp 4 25.43% 8 3.18% 2013.42
6 32.64% 10 3.26% 1960.79
2 18.37% 6 3.06% 2090.60
Sun 4 11.44% 8 1.43% 4476.28
1 7.15% 5 1.43% 4476.28
8 17.16% 12 1.439 4476.28
Experiment 4 - Test with 50 or more missed/skipped deadlines
Test # Percent CPU Tasks Step Size KWIPS(raw)
Masscomp 10 44.50% 14 3.18% 2013.42
15 62.02% 19 3.26% 1960.79
17 64.29% 21 3.06% 2090.60
Sun 36 57.19% 40 1.439% 4476.28
36 57.19% 40 1.43% 4476.28
36 57.19% 40 1.43% 4476.28
Figure 4
e ——— —
Page 13 Ada Investigation

Bibliography

———————————— _———

2.0 Bibliography

Donohoe, Shapiro, and Weiderman, Hartstone Benchmark User’s Guide, Version 1.0,
Carnegie-Mellon University Software Engineering Institute, March 1990.

Donohoe, Shapiro, and Weiderman, Hartstone Benchmark Results and Analysis, Camegie-
Mellon University Software Engineering Institute, June 1990.

Proceedings of the Third Annual NASA Ada User’s Symposium, November 1990.

Weiderman, Nelson H., Ada Adoption Handbook: Compiler Evaluation and Selection,

Version 1.0, Carnegie-Mellon University Software Engineering Institute,
March 1989.

Weiderman, Nelson H., Hartstone: Synthetic Benchmark Requirements for Hard Real-Time
Applications, Carnegie-Mellon University Software Engineering Institute,
June 1989.

Page 14 Ada Investigation

SOUTHWEST RESEARCH INSTITUTE
Post Office Drawer 28510, 6220 Culebra Road
San Antonio, Texas 78228-0510

An Investigation and Comparison of the C and Ada
Programming Languages for Use In the Space Station
Control Center and Space Station Training Facility

NASA Grant No. NAG 9-435
SwRI Project No. 05-3531

Prepared by:
Timothy J. Barton
Steven W. Dellenback, Ph. D.

Prepared for:
NASA
Johnson Space Center
Houston TX 77058

Presented on:
March 8, 1991

_——

Introduction

NASA is about to embark on the development of millions of line of software for the Space Station
Control Center (SSCC) and the Space Station Training Facility (SSTF). The C programming

has been wrinten to provide input to the question of which language to use for the SSCC and SSTF.

Due 1o the brief nature of this investigation, an in-depth performance benchmarking of the
languages was not possible. These same time constraints did not permit an in depth study of all
SSCC and SSTF applications which would be affected by the C versus Ada queston. This paper
will instead focus on more general discussions of the two languages and will focus on the
applications with which the researchers have the most “hands on” experience. These applications
are specifically the MCCU workstation applications.

The information presented in this paper is mostly the result of case studies. These case studies

of this paper:

. Lockheed in Austin, Texas, is currently completing a large (30 programmers, 240,000 :
Ada statements) Ada effort. This effort is of special significance because it is being

Ada effort.

. SwRI is currently using Ada in the implementation of the Combined Arms Service
Trainer (CAST). This project is relevant due to the number of experienced C
programmers which are now using Ada in the development of CAST. This effort is
using 80386 PCs as their development and target hardware platform.

. The experiences of the Flight Dynamics Division (FDD) at Goddard Space Flight
Center have also provided information for this paper. The experiences of the FDD are
of special significance because they have been gathered over almost 6 years and they
are mostly from projects implemented on mainframes and minicomputers.

Various other case studies have provided information for this paper. The experiences of the Shuttle
Training Aircraft (STA) and the Second TDRSS Ground Terminal (STGT) are some of the other
case studies used in the preparation of this paper.

These case studies and information gathered from recent publications provide the basis for this
discussion concerning Ada and C. The following ten questions have been identified by NASA in
regard to the Ada versus C question. Each of these questions is addressed within this paper.

Page 1 Investigation of Ada vs. C

\

Questions
1. Does the amount of MCCU C code available for reuse justify the use of C for new SSCC code?
[Less complex operating (run-time) environment then would be required to handle C, Ada, and
possibly Fortran in TCATS System]
2. Can the productivity improvement of 2-lines of code per PYE per day claimed by Loral be
justified when going from Ada to C language?
(8-line/day for Ada versus 10-line/day for C]

3. Cancoding in C be done in a way (i.e., using up front software engineering practices and tools)
that resuits in a product that is as easily maintained as an Ada code product, i.e., is the life cycle
cost for C code naturally higher than Ada code?

4. Does the control center and trainer systems requirements differ sufficiently to justify C
language for SSCC and Ada language for SSTF (i.e., real-time operation of trainer systems, mostly
new code required by Trainer; however, some Fortran reuse is expected, etc.)?

5. Does the future of code development suggest limitations on resources (people and tools) for C
programming versus Ada programming (next 10-20 years)?

6. Are the up front costs for Ada (tools, training, and lack of experienced programmers)
significant compared to that for C?

7. What are the risk assessments for completion of the SSCC and SSTF on schedule and within
cost considering use of C versus Ada languages for new code in each facility?

8. Are COTS products that will be available in the next 1-10 years more likely to be in C or Ada
language?

9. Will COTS products in the next 1-5 years be available that will support multiple language
applications (C, Ada, Fortran)?

(i.e., will COTS tools likely have bindings for Ada, Fortran, and C, such as X windows and
other system services tools]

10. What would be your recommendation for language use in the SSCC and SSTF given the desire
to maximize use from Shuttle, maximize portability across SSFP and within the SSCC/SSTF
facilities, independence from hardware constraints, and significant budget pressures to cut up front
costs and reduce run out costs with minimum risk to delivery capability and schedule?

[Consider resources availability, etc.]

e @ ———

age 2 Investigation of Ada vs. C

’

1. Does the amount of MCCU C code available for reuse justify the use of C for
new SSCC code? [Less complex operating (run-time) environment then would
be required to handle C, Ada, and possibly Fortran in TCATS System]

This is very dependent on two principle factors, the amount of MCCU C code which can actually
be reused in SSCC and the benefits of Ada compared to C. If a majority of all Delivery 1 SSCC
software is directly reused from MCCU, then C might be the best selection for all SSCC code. If
it is demonstrated that Ada offers significant benefits over C, then Ada might be the best selection
for all new SSCC code given the expected long life cycle of the SSCC.

The first factor in determining whether new SSCC code should be written in Ada is to ensure that
Ada offers benefits over C for the life cycle of the SSCC. Everyone would agree that it does not
make sense to use Ada if C is going to provide more benefits over the life cycle. It does not make
sense to use Ada just because it has been widely associated with the SSFP. For the sake of argument
for this question, it will be assumed that Ada provides benefits over C which are desired by NASA.
If this is not the case, then the selection of C would be obvious. The Ada versus C argument will
be addressed within other questions.

Given the assumption that Ada provides benefits over C which are desired, the decision to use Ada
for new SSCC software is dependent on two factors:

. The amount of MCCU software which will be reused could justify the continued use of
C in new SSCC software. If 90% of MCCU software could be reused without .
modification, then it would make sense to continue to use C. A completely C based '
SSCC environment would be less complex than a mixed language environment and
might allow compatibility between SSCC and MCCU applications. Compatibility with
MCCU is clearly a goal of the SSCC in an effort to reduce development costs for both
centers. Differences in mission, scope, and data acquisition strategies, may make this
compatibility goal impossible to attain. If this goal can be realistically attained, it makes
sense 1o reuse the existing base of MCCU C code and to develop new SSCC code also
in C.

. The differences in mission, scope, and data acquisition strategies will probably mean
compatibility between MCCU and SSCC will not be maintained beyond Delivery 1 of
the SSCC software. The amount of MCCU software which can be directly inserted into
the SSCC without modification is probably very small in light of the modifications
which are required to meet the SSCC requirements. The following are examples of the
MCCU workstation software which have been selected for integration into the SSCC
from MCCU:

Display Manager
Display Builder
Comp Manager
Comp Builder

Each of these applications will require modifications before they can be integrated into
the SSCC. The potential for reuse varies for each of these applications based on the new
SSCC requirements for each application. The Display Builder and Display Manager ap-
plications are tentatively scheduled to receive new interfaces (GKS to X Windows),
new data acquisition strategies, and additional functionality to meet SSCC require-

f

Page 3 Investigation of Ada vs. C

\

ments. The new interfaces and data acquisition will require extensive modifications to
both applications and may limit reuse to as little as 10% of existing MCCU Display
Manager and Display Builder software. In the case of the Display Manager and Builder,
it may be reasonable to rewrite these applications from scratch using Ada if Ada is de-
termined to be more desirable than C due to the projected long SSCC life cycle.

The potential for reuse is much greater for the MCCU Comp Manager and Comp Build-
er applications. These applications require less extensive medications to their user in-
terfaces to meet SSCC requirements. Modifications are still required to their respective
user jnterfaces, but the potential for reuse is probably about 60-70% in the user interface
portions of these applications. The Comp Manager and Comp Builder applications will
require extensive modifications for the new data acquisition strategies used in the
SSCC and to meet new SSCC requirements. These required modifications, and the
much smaller size of these two applications when compared to the Display Manager
and Display Builder, also makes it reasonable to rewrite them from scratch in Ada if
Ada can be shown to provide important benefits over the long life cycle which is pro-
Jected for these applications.

One important aspect of converting the Comp Builder to Ada is the transiation of comps
into executables by the Comp Builder. All versions of the Comp Builder use the work-
station resident C compiler to produce machine executable comps for the Comp Man-
ager. An Ada based Comp Builder will either require the Ada compiler to be resident
on the Comp Builder workstation, or the executable comps may continue to be gener-
ated via the C compiler. Converting the Comp Builder to use Ada as the target language
from which executable comps are produced will have a sizable impact on the Comp
Builder’s translation functions.

Extensive modifications will be made to the four existing MCCU applications identified above
before they are integrated into the SSCC. These modifications have been shown to significantly
impact the percentage of code which can be reused. The relatively low percentage of existing code
which can be reused coupled with the new software which must be developed makes it reasonable
to consider Ada for use in the SSCC if Ada can be shown to provide benefits over C.

An important option is the integration of both languages into the SSCC. NASA-Goddard and other
commercial vendors (Lockheed-Austin as one example) have had very good success utilizing a
mixture of C and Ada. The Flight Dynamics Division (FDD) at Goddard has committed to Ada as
their first language of choice. Even with this commitment to Ada, the FDD still reserves the right
to use C in portions of their systems where C is more appropriate than Ada. The FDD is currendy
starting the development of a large software development effort estimated to be a 300 man-year
effort. Most of the software will be developed in Ada, but some portions of the system will be
developed in C because they feel C is a better choice than Ada for some portions of the entire
system. The FDD feels that C is a better language for low level graphics operations.

The Comp Builder may be an excellent application in which to use both Ada and C. The Comp
Builder application may be written in Ada while the comps which it generates may continue to be
complied C. This would utilize Ada where it is most appropriate, but would still utilize C for a
portion of the application where it is well suited due to the transparent compilation of comps which
must occur. The runtime impacts of the port to Ada would be minimized for the Comp Manager
and a larger portion of existing Comp Manager code could be reused. This would allow 95% of the

Page 4

Investigation of Ada vs. C

#

Comp Builder/Manager software to be written in Ada, and C could be used for the 5% of software
where its benefits over Ada could be realized.

Page 5 Investigation of Ada vs. C

\

2. Can the productivity improvement of 2-lines of code per PYE per day
claimed by Loral be justified when going from Ada to C language? [8-line/day
for Ada versus 10-line/day for C]

The different objectives and philosophies of the Ada and C languages make an 8 lines per day
versus 10 lines per day comparison difficult. It is reasonable to expect that in one day a C
programmer will write more lines of code than an Ada programmer. For smaller projects this has
been demonstrated and is widely accepted. Over the course of longer projects, the benefits of the
Ada language compensate for its more complex and larger source files.

The experiences of developers on the SWRI CAST program would indicate that it will take slighdy
more time to develop Ada source code than C source code. This is atributed to the fact that the
Ada language is more verbose than C and it is widely acknowledged that Ada is a better self
documenting language than C. C was designed from its beginning to be the HOL replacement for
assembly language. According to the fathers of C, “Cis a relatively ‘low level’ language.”

“C s a general-purpose programming language which features economy of expression
. Cis not a ‘very high level’ language, nor a ‘big’ one, and is not specialized to any
particular area of application.” [8]

Ada is a much larger and more complex language than C and its source files are as a result typically .
more verbose than C. Many Ada functions are often written in two source files: the package
specification and the package body, whereas the same function in C would only require 1 source
file. There is a price to pay for the additional documentation provided by the more verbose Ada
source code.

Is the additional price for Ada source code 2 lines per day? For a smaller project, it is reasonable
to expect development in Ada to take longer.

“The same strong typing and documenting that make Ada programs easy to understand
and cost-effective to maintain, can sometimes make it awkward to write simple test pro-

grams.” [6]

received mostly “on-the-job” training as the project progressed. Programmers on the C project
developed more code initially, but the Ada project completed integration about the same time as
the C project. Project managers at Lockheed acknowledge that it took longer to get started in Ada,

Page 6 Investigation of Ada vs. C

#1-

but over the entire development cycle, especially the testing and integration phases, Ada compared
very similarly to C.

The FDD at Goddard has collected extensive statistics comparing development in Ada to
FORTRAN. These statistics compare Ada to FORTRAN instead of Ada to C, but the similar
complexity of FORTRAN and C makes the information useful for comparison. The FDD has
collected comparison data over 5 years during 10 projects, 5 FORTRAN projects and 5 Ada
projects. They have found that the actual cost per line of code is either the same for FORTRAN
and Ada, or that Ada is actually cheaper than FORTRAN. These costs do not factor in the
significant development costs saved through the reuse of existing Ada software.

For a smaller scale project, most everyone agrees that given a trained Ada programmer and a
trained C programmer, the C programmer will be able to complete more new code sooner. For a
larger, more complex project, most everyone agrees that there will be little difference in time-to-
completion between Ada and C. Given this theory, and given the fact that most of the applications
which will be in the SSCC will be fairly large and complex, it would follow that contractors should
be able to complete Ada versions of the SSCC applications in the same PYE. Unfortunately, few
if any contractors have the level of Ada expertise available which will be required. The 25%
difference estimated by Loral is assumed to cover training time as C programmers transition to Ada
programmers. This 25% penalty should only be absorbed once. Thereafter, the cost for an Ada
project should compare very closely to the cost for the same project written in C.

’
Page 7 Investigation of Ada vs. C

‘

3. Can coding in C be done in a way (i.e., using up front software engineering
practices and tools) that results in a product that is as easily maintained as an
Ada code product, i.e., is the life cycle cost for C code naturally higher than Ada
code?

Software maintenance is the process of altering computer source code after the initial version of
the system is placed into production. Software maintenance is a broad term and is used in the
following context, that is, software maintenance includes:

. Modification to correct errors and design defects
. Modification of existing features to improve the software design

. Adaptation of the software to coexist with new hardware and software (i.e. software
will need to be retested and possibly modified when new versions of operating systems
are installed)

. Modification to basic data sources (such as files, databases, real-time data sources, etc.)
. Implementation of new features within the basic design

Any robust and heavily used system will have tremendous requirements for change, particularly
after the first major reiease of the system. It has been estimated by many authors, through case
studies and theoretical evaluation of the software life cycle, that most organizations will devote up
to 80% of their computer resources to the maintenance of software (the balance of the resources is

utilized for development of software systems).)

With the proliferation of software systems over the last twenty years, the software industry is
struggling to maintain the many systems currently in production. The major hurdle for most
organizations is that the systems developed over the last twenty years lack appropriate
documentation as well as established (or utilized) procedures to perform software maintenance. As
a result, many organizations rarely reuse software from previous efforts because of the lack of
understanding of what exactly exists.

During the late 1980s, a proliferation of software development environments have been marketed
by various organizations. These software development environments allow software requirements,
actual source code, test procedures and user documentation to be integrated into a single
environment so that the necessary information about the source code is available in a controlled,
complete manner.

When selecting a computer programming language for a system to be developed which will need
to be maintained over a number of years, a careful evaluation of the programming language
features needs to be made to assure that the selected language will cost effectively serve the
software life cycle.

The C programming language was designed to provide system level programming services for the
UNIX operating system. The environment was initially targeted for a research environment where
software life cycles were not a concern. The initial design goal of C and UNIX was to provide an
environment for a researcher to solve research problems. The language is a level of abstraction
above assembly language which provides the user a language which has the flexibility to fully
exploit the host computer while not providing many semantic constraints (implying that is easy to
develop C source code files which behave erratically). The UNIX operating system has matured

\

Page 8 Investigation of Ada vs. C

B

and evolved remendously from its initial design, the C language has essentially not changed since
its introduction.

The Ada programming language was conceived by the Department of Defense to solve the problem
of providing a language for development of embedded systems that could be developed and
maintained by many people over many years. Ada was designed as an environment, that is, one of
the primary design goals was to provide a language which encouraged the reuse of software. This
was achieved by introducing rigid standards on the development of software routines so that the
difficulty of transporting software between applications is minimized. The Ada language has many
explicit syntactic and semantic constraints which do not allow a programmer to develop ill-
behaved source code.

Many programming environments have been developed for Ada, these environments provide an
excellent foundation on which long term software programs can be developed. Ada was designed
from the start to support long term project development (it was not a design goal of the C language),
the Ada language provides many features which greatly simplify as well as encourage a structured
software development environment.

SwRI believes that in the long-term, if cormrectly utilized, Ada will require fewer software
maintenance resources than a similar C program. Initial development costs for the C program may
be less than for an Ada program (particularly for smaller applications) but over the course of the
entire life cycle it is felt that costs will be less in the case of Ada. Due 1o the personnel and contract
turnover present at NASA, it is obvious that any long term project will have numerous personnel .
assigned to the effort. The surest way for NASA to develop a good software product would be to
choose a development environment in which NASA can establish maximum control of the
software development process -- this environment exists for Ada.

Additionally, it might be possible to establish an environment for C which would be as rigorous as
most Ada environments -- however that environment is not commercially available today. If this
C environment were to be established, many manual controls and procedures would have to be
instilled into the environment in an equivalent manner to many existing Ada environments. While
these manual controls and procedures may be initially followed, it is difficult to predict whether or
not they could be maintained over many years. In contrast, many of the Ada controls and
procedures are natural to the development environment and if they are not followed -- application
programs will not be completed.

The answer to this question is both yes and no. Software written in C can be developed in a manner
similar to Ada. MIT’s X Windows and OSF’s Motif are two examples of programs written in C
which are designed with some of the Ada mentality. Ada will provide a more natural mechanism
for this type of decomposition and will enforce certain aspects which are important to the software
development life cycle.

Page 9 Investigation of Ada vs. C

\

4. Does the control center and trainer systems requirements differ sufficiently
to justify C language for SSCC and Ada language for SSTF (i.e., real-time op-
eration of trainer systems, mostly new code required by Trainer; however, some
Fortran reuse is expected, etc.)?

The SwRI researchers who generated this paper have not received as much exposure to the SSTF
as they have the MCCU workstation applications. There was not enough time to investigate the
SSTF applications, so a recommendation has not been made specifically for the SSTF applications.
A blanket endorsement across as large a center as the SSTF for either C or Ada is not
recommended. Each language has its strength and weaknesses. A generic set of metrics should be
determined which can be applied against any application to determine which language should be
used. Once the metrics are determined, then they can be applied against applications such as the
trainer systems.

One of Ada’s strengths is the support within the language which encourages reusability of code.
Experiences at Goddard and within industry support the claim that Ada encourages reusability of
code. On the surface, a training system would seem like the ideal type of system in which to reuse
software.

\

Page 10 Investigation of Ada vs. C

”

5. Does the future of code development suggest limitations on resources (people
and tools) for C programming versus Ada programming (next 10-20 years)?

There are many indications that both Ada and C will continue to be supported for at least the next
10 years. The large base of C software and programmers will ensure C’s continued widespread use.
Ada support and usage is growing steadily, and it is reasonable to assume an increasing availability
of Ada tools and programmers.

C has achieved widespread acceptance across a variety of hardware platforms. In the Unix
workstation arena, C is the dominate language for software development due to the fact that Unix
itself was writtén in C. In the PC arena, the popularity of C is evidenced by the sheer number of
available C compilers, C tool chests, and COTS written in C. There is a large and ever expanding
pool of trained C programmers due to the demand for applications where C is typically used. Most
universities in the country offer a C class, and many base their core curriculum around the use of C.

The next 10 years will see continued widespread support and use of C. University curriculum, and
the growing PC and workstation markets will ensure C’s continued success.

Although C has achieved widespread success and support, and this support can not be overlooked
or under estimated, the projections for C are not without some questions. The recent popularity of
C++ indicates that “vanilla C” does not fulfill every objective. It is interesting to note that the
features which are being added to C++ are many of the features which were the basis for the design
of Ada.

C++ is a relatively new language when compared to C or even Ada. C++ was developed at AT&T
by Bjarne Stroustrup. The first C++ translator was completed in 1985. C++ adds the object oriented
data encapsulation and abstract data types features of Ada to C. C++ also incorporates other
important Ada features such as function inlining to improve performance. C++ is evidence of the
fact that object oriented design and object oriented programming (OOP) are powerful tools in the
development of complex applications.

C has always been regarded as a slightly higher level assembly language with the power and
responsibilities which come with that power. Some even regard C as a more “dangerous” tool than
assembly language because of the power and freedom permitted within C. The power and freedom
which are C’s strengths require responsibility and organization by the programmer for even modest
sized programs. C++ is trying to address these issues:

“Whereas the C programming language tests a programmer’s inner strength and builds
character by following an ‘anything goes’ philosophy, C++ is the programmer’s friend,
providing compile-time error messages that enforce data encapsulation.” [9]

Products which are coming to market indicate C++’s popularity. More and more compilers are
becoming available for C++ for both the PCs and the workstations. Even the MOTIF bindings from
OSF now support C++. It appears that the computer industry has acknowledged the power of OOP.
The well publicized “vaporwares” and the failures of software companies to deliver products
ontime may instigate a rapid move toward OOP and C++.

#

Page 11 Investigation of Ada vs. C

\

The 1960’s were dominated by assembly language. The 1970°s and 1980’s were dominated by
structured programming and the popularity of HOL languages such as FORTRAN, C, Pascal, and
Lisp. The 1990’s may be dominated by OOP and languages such as Ada and C++.

Ada did not catch on and dominate the industry as it was projected to do during the last five years
of the 1980’s. The Ada language was developed with much fanfare and was touted as the DoD's
answer to its mounting software costs. Unfortunately, too much was expected of Ada before it had
matured. C language compilers were given the opportunity to mature over several years before C
became widely used. The fanfare and the expectations placed on Ada did not allow the language
several years to.mature, and when the language did not meet the industry’s expectations, it was
regarded as unusable. This perception of Ada still exists today in the mind of many software
developers and system designers.

The Ada language is more complex than C and Ada compilers are as a result necessarily more
complex than C compilers. The Ada ANSI standard also requires that the complete Ada language
is implemented before the compiler receives validation. Most of the original Ada compilers were
expensive, of poor quality, and not very efficient. As a result, the Ada language itself was criticized
for being inefficient when the implementation of the language was the culprit. This perception still
exists today.

Ada compiler technology has improved significantly and continues to improve.

“Technical problems with Ada stll exist, although experts say they’re decreasing :
steadily in significance, and could virtually disappear over the next three to five years.”
(6]

The experiences at Cray, the supercomputer manufacturer, are an excellent example of the
improvements in Ada compiler technology. The Cray Ada compiler currently produces code which
outperforms the same code written in FORTRAN and compiled using Cray’s FORTRAN
compiler. The Cray Ada code for the Whetstone and Dhrystone benchmarks outperforms the same
code written in FORTRAN.

There are numerous examples of the advancements in Ada compiler technology. It is important to
remember that the source language has little impact on many operations performed within an
executable. When two variables are subtracted in a HOL language, it is the compiler’s job to
convert that subtraction into the CPU’s machine code which performs two register loads from
memory and then a subtraction of the two registers. The CPU should perform the same task
independent of the HOL language which was used to build the source code.

“On similar benchmarks I have seen straightforward scalar Ada come very close to
what C can do on the same code. Indeed I have seen claims that for this kind of code,
Ada has done better than C. I am very surprised that anyone who halfway understood
compilers would claim that unadorned, numerical, scalar code from a language A pro-
gram would necessarily be slower than the same code from language B. I'd be really
delighted to see these claims debunked forever. On a level playing field, there are only
X many ways to evaluate a scalar expression. ... The growing maturity of compilers,
users, and managers is really gratifying! How long do you think it’ll take for the bulk

\

Page 12 Investigation of Ada vs. C

C-2

”

of the industry to throw away their outdated stereotypes about slow, clunky Ada? It’s
good to see intelligent debate about what really makes programs slow. It ain’t the
source language, folks.” [11]

The performance of a language should not be an issue. The language’s ability to represent these
operations should be the issue. Ada may in fact offer advantages over C for some applications:

“.. hardware vendors are discovering that Ada may offer an inherent advantage for pro-
gramming digital signal processors over its arch rival, C> (7]

A tremendous amount of effort is being spent on the investigation and improvement of Ada
performance. Ada has undergone a maturing process during the last five years and it is now
struggling to dispel the many adverse opinions which were formed by software developers during
Ada’s formative years. Support for Ada is steadily increasing as more quality Ada compilers
become available to universities and industry.

It should be noted that it took C about 10 years to gain wide acceptance after it was written. Just as
the legacy and installed base of FORTRAN and assembly language systems slowed the acceptance
of C, so also has the large installed base of C and FORTRAN slowed the acceptance of Ada.

Ada has always been expected to succeed due to the DoD’s sponsorship of its development and -
subsequent mandate of use in 1983.

“The birth of a new programming language is rarely celebrated far beyond the imme-
diate family. But, when the sponsor of the language is the largest consumer of comput-
ers in the world, then it becomes a major event.” [10]

The DoD’s 1983 mandate allowed waivers to be granted if Ada compilers were not available or
when using Ada would be more expensive or might prevent developers from meeting their
schedules. The poor performance of Ada code and lack of trained Ada programmers resulted in
many waivers being granted since 1983. The relative ease with which waivers were obtained
allowed C and FORTRAN to prosper and Ada’s problems to persist.

The DoD has recently added teeth back into its Ada mandate by extending its mandate to include
automated data processing in addition to embedded real-time applications. Congress further
strengthened the DoD’s mandate by adding language to the 1991 Defense Appropriations Act
which states that after June 1, DoD programs that do not embrace Ada will be breaking the law. As
before, Congress has left a loophole, but at this time it will be much harder to demonstrate the need
for an Ada waiver.

The experiences of the FDD at Goddard are also of special interest. Frank McGarry, the Division
Chief of the FDD at Goddard has seen the maturing of Ada since the FDD started using Ada in
1985. The FDD has committed to making Ada their main language by 1995. The FDD has seen an
increase in the quality of Ada compilers and professionals, and the FDD has also seen an increase
in the number of contractors bidding Ada in proposals. Mr. McGarry thinks the most encouraging

e e e

Page 13 Investigation of Ada vs. C

E

sign is the number of contractors bidding Ada on their own initiative when Ada was not identified
as a requirement.

The next 10 years looks promising for both C and Ada. C’s large base of applications and trained
programmers will ensure its continued use for many years. Recent developments surrounding C++
seem to indicate a shift towards C++ on a large scale over the next few years. C++ may be a better
option than C itself when the long life cycle of the SSCC and the complexity of the SSCC
applications is considered.

The next 10 years also look very promising for Ada. The next § years may see a more significant
growth of Ada-than the last 10 years, due to the availability of quality compilers, the new DoD
mandate, the increasing interest in OOP, and the increasing complexity of DoD applications.

This paper has not attempted to project the state of C or Ada past 10 years. The computer industry
has proven to be too fast paced and uncertain. In 1980, the great language scholar Ellis Horowitz
predicted that Pascal would be the language of the 1980’s. Pascal did indeed enjoy a large measure
of success during the 1980’s, but the later part of the 1980°s saw the emergence of C as the
language of choice for engineering type applications. It is almost impossible to determine whether
C or Ada will receive greater support 20 years from now. The trends we are observing today are
the interest in OOP, the emergence of C++, the US Congress continued endorsement of Ada, and
the increasing quality of Ada compilers.

\

Page 14 Investigation of Ada vs. C

#

6. Are the up front costs for Ada (tools, training, and lack of experienced pro-
grammers) significant compared to that for C?

The up front costs for Ada will be higher than for C. The size and total cost of the project will once
again determine whether Ada is a viable option. Ada tools and training are more expensive and are
fewer in number than C tools or training because Ada is a more complex language with less
maturity and therefore less industry support. There is a lack of experienced Ada programmers
when compared to C. The size and nature of the project may mitigate the deficiencies of Ada or
enhance them.

The lack of trained programmers is always more of a concern for Ada project managers than C
project managers, and Ada training often confirms a project manager'’s bias against Ada. A survey
of Ada training courses compared to C training shows that Ada training courses are longer and
more expensive than C training. A number of video tapes are available for self-paced C training,
while very few Ada video tapes are available. Ada is definitely a more complex language than C
and to use the language well typically requires a different design philosophy than is typically used
with C or FORTRAN. Ada is acknowledged to have a steeper “learning curve” because the
language is more complex and because Ada incorporates OOP practices which are less prevalent
than the traditional structured programming techniques. C is a smaller language which is less
imposing than Ada. It is widely believed that programming in Ada requires much more extensive
and expensive training.

NASA Goddard has noticed a change in the nature of Ada training during the last several years. In -
1985 the FDD committed to the use of Ada where possible and as a first step towards Ada the FDD
programmers enrolled in Ada training. The Ada training at that time was a very intensive training
in both OOP methodologies and the application of OOP using Ada. During the last several years,
the FDD has noticed a change in the nature of Ada training toward less intensive training with less
emphasis placed on “grandiose OOP techniques.” The FDD has noticed a trend toward “C like”
training, and they feel the effectiveness of this training is comparable to past training methods. This
trend is one the FDD is watching closely as they progress toward using Ada for 70% - 80% of all
projects by 1993.

Interviews with three Ada project managers have discovered a surprising but consistent theme. The
experiences at SWRI, Lockheed, and NASA-Goddard indicate that the extensive training that was
generally associated with Ada may not be required for the whole project team, and that the type of
training now being offered is sufficient for a segment of the programmers on larger projects. This
recent change in approach to training may lessen the cost and impacts of a lack of skilled Ada
programmers.

Many project teams are using a tiered approach to Ada training. If an Ada project was to be
composed of 10 programmers, 2 programmers would be skilled Ada programmers. Three
programmers would be moderately trained, and the other 5 programmers would have little or no
Ada experience at the start of the project. The layout of the software and the design of the interfaces
would be recorded in Ada package specifications. The majority of the implementation would be
completed in Ada package bodies by the 5 novice Ada programmers based on the Ada package
specifications developed by the more experienced/trained programmers.

This tiered approach allows the more experienced developers to do the overall system design, the
mid-level programmers to do the remaining interface design, and the inexperienced programmers
to do the implementation. This allows the more experienced programmers to have a greater impact

R P e

Page 15 Investigation of Ada vs. C

‘

on the design of the entire system, limiting the scope of the inexperienced programmers to
implementation. Individual package bodies can then be recoded by a more experienced
programmer if it becomes necessary. The recoding of a package body is less likely to have a “ripple
effect” when the software is in Ada as opposed to C. The project managers at both SwRI and
Lockheed feel the tiered approach helps keep projects out of trouble in the area of interfaces.

This dered approach has been used at both SwRI and Lockheed with very good results. This
approach alleviates some of the concerns about a lack of trained Ada programmers. Both Lockheed
and the SWRI CAST group feel that using a tiered approach, even given a lack of skilled Ada
programmers, is LESS of a risk factor on a large program then using C. The project managers of
the SWRI CAST project feel the potentially greater benefits of Ada outweigh the initial training
which is required and the lack of experienced programmers.

Ada compilers are in almost all cases more expensive than C compilers. There are several good
Ada compilers which are comparable in price to C compilers for the same hardware platform, the
AdaZ compiler for the PC is an example. There are several factors which usually cause Ada
compilers to cost more than C compilers. The Ada language is more complex than the C language,
and the resulting Ada compilers are more complex to develop. Ada compiler writers must
implement the entire ANSI/MIL-STD-1815A language to become validated, whereas the C
language has only recently become an ANSI standard. The lack of a defined standard allowed C
compiler writers more freedom in the implementation of their compilers. A standard programming
environment is also specified for Ada, the Ada Programming Support Environment (APSE), and
the Ada compiler writer must provide these additional tools which may not be bundled with C °
compilers.

The up front costs for Ada are a very real concern. There is generally a lack of trained Ada
professionals. This is usually perceived as a very important risk factor. Projects at NASA, SwRI,
and Lockheed have shown this is not as big a risk factor as previously expected. The more
complex Ada language dictates that Ada training is more expensive than C training and there are
fewer sources of Ada training. NASA Goddard has seen a change in emphasis in Ada training
which may indicate that an intensive study of both the Ada language and OOP design
methodologies is not needed. NASA Goddard has noticed a trend during the last several years
toward C language style training. The more complex Ada language and requirement for full
implementation of the language for validation dictates that Ada compilers are more expensive than
C compilers and there are fewer Ada compilers available. Smaller scale, less complex projects will
not be able to offset the additional costs of Ada, but experience has demonstrated that larger
projects can absorb the up front costs of Ada. The nature of the project will determine if the
additional costs for Ada training and compilers can be offset by the good software engineering
principles that are embodied in Ada which allow the management of complex programming tasks.

\

Page 16 Investigation of Ada vs. C

7. What are the risk assessments for completion of the SSCC and SSTF on
schedule and within cost considering use of C versus Ada languages for new
code in each facility?

There is greater support for C in environments similar to the SSCC and SSTF; C is established and
has been proven to work. Ada does have risks associated with it when compared to C, but Ada also
offers benefits in areas that C is suspect. The following table lists many of the factors which will
be involved in the development and maintenance of the SSCC and SSTF. These factors have been
grouped according to each language’s strengths. A “+” indicates the language is uniquely superior,
a “-” indicates the language is clearly more of a risk factor.

Factor Ada C
Programmer productivity + +
Software development support tools + +
Future Usage +
Widespread acceptance, programmer availability +
Small program risks for completion, integration +
Interfaces to COTS +
Compiler cost, quality +
Existing MCCU software reuse +
Training costs, availability +

DoD Mandate, Congressional support

Software error rates, reliability

Future software reuse within SSCC, SSTF, SSFP
Large program risks for completion, integration
Portability

Standard language, language features (ANSI - ISO)
Maintainability

+ + + + + + +

Page 17 Investigation of Ada vs. C

“

8. Are COTS products that will be available in the next 1-10 years more likely
to be in C or Ada language?

For at least the next five years, more COTS products will be written in C than in Ada. There are
several important reasons why C will dominate COTS product development in both the Unix
workstation and PC arenas.

Ada is currently used primarily for large DoD contracts. Some work is being done outside of DoD
and on smaller scale projects, but for the most part, Ada is used for large scale projects for either
the military or NASA. These large projects often apply to a very specialized problem domain and
are not applicable to the general market place. Ada is currently used by large government
contractors such as GE, Lockheed, and Link. GE is currently working on the TDRSS satellite
terminal for NASA and Link wrote the B2 trainer entirely in Ada. Both of these Ada systems are
success stories, but there is little general need for a stealth bomber trainer or satellite terminal.
There are several exceptions, the STARS Xlib bindings is one example, but for the most part the
results of most Ada development projects do not become COTS products due to their nature.

Most COTS products are developed by Independent Software Vendors (ISV) and smaller software
companies. These companies are most concemned with up-front development costs and quick
market delivery. There are a number of factors which lead ISVs and smaller software companies
to develop in C instead of Ada.

The compiler is the most important tool of software developers and C compilers are traditionally
less expensive than Ada compilers. In the Unix workstation arena, the C compiler is often bundled °
with the OS or is readily available at a reasonable cost from the OS supplier. A prime example is
Sun Microsystems workstations. Sun workstations come bundled with a C compiler at no
additional cost, and the excellent GNU C compiler is also available free of charge for Sun
workstations. An Ada compiler for the same workstation will cost approximately $5,000 dollars
and may cost significantly more.

The compiler situation is even more clear-cut in the PC arena. There are a number of readily
available excellent C compilers available for the PC. Good C compilers are available for less than
$100. There are far fewer good Ada compilers available for the PC and the compilers which are
available are more expensive. As in many areas of comparison between C and Ada, the number
and quality of Ada compilers for the PC is improving while the cost is declining. Meridian’s AdaZ
compiler is an example of a good quality Ada compiler for the PC.

The larger pool of C software developers and the lack of good Ada software developers also causes
more COTS products to be written in C. The costs associated with the additional hardware
resources (memory, disk space, processing power) which may be necessary for Ada software
development also influences COTS developers to use C.

These factors and others indicate that more COTS products will continue to be available written in
C than Ada. The way which COTS products are used may reduce the importance of the language
in which COTS packages are written. The language used to develop shrink wrapped applications
or OS software which do not contain an Application Program Interface (API) is of little or no
importance. If Lotus 1-2-3 or “vi” is written in Ada or C, does not matter. In both cases, an APl is
not required, so the language used to develop the application does not matter.

\
Page 18 Investigation of Ada vs. C

’

In cases where the API provided by the COTS package is utilized, then the languages supported
natively by the API become important. This issue is addressed in the next question.

It is very hard to predict if C’s popularity with ISVs and software companies will continue five
years from now. The large pool of C programmers, the growth in the Unix based workstation
market, and the increasing use of C (as opposed to assembly, Pascal, or FORTRAN) on PCs will
definitely assure the development of more COTS packages in C than Ada.

The 1990’s appear to be the decade of Object Oriented Programming (OOP) in the way that
structured programming and the use of High Order Languages (HOL) dominated the late 1970’s
and 1980’s. The number of COTS developed in C++, Ada, or even Smalltalk in the next five years
may increase as OOP is taught in the universities and migrates into the commercial sector. C++ has
already shown phenomenal growth within the last two years. Examples of this are evident in the
number of C++ compilers which have recently become available and the recent release of the Motif
bindings from OSF which support C++. The use of the C++ language may surpass “true” Cin the
development of COTS products during the next 5 years.

—

Page 19 Investigation of Ada vs. C

“

9. Will COTS products in the next 1-5 years be available that will support mul-
tiple language applications (C, Ada, Fortran)? [i.e., will COTS tools likely have
bindings for Ada, Fortran, and C, such as X windows and other system services
tools]

Currently, more COTS APIs are available for C than for Ada. This trend will continue for at least
the next 5 years. In the workstation arena, Ada bindings are available for most popular applications.
If Ada bindings are not available, the Ada pragma construct can be used to interface to the C
bindings. This approach has been used very successfully by Lockheed with a number of COTS
packages, incliding database applications. The following APIs are good examples of the
availability of APIs for C and Ada:

. The POSIX standard’s API was originally written in C due largely in part to Unix’s
large influence on POSIX. The POSIX bindings are now also available in FORTRAN
and Ada.

. The X Window X11R4, MOTTF, and XView APIs were originally written in C. Ada
bindings are now available for all three. C++ bindings are also now available for
MOTTF, another indication of the growing popularity of C++.

Computer Aided Software Engineering (CASE) is one field which has embraced Ada extensively.
Most leading CASE tools operate well in an Ada environment and many generate Ada code from
information entered into the CASE tool. CADRE’s Teamwork product is currently being used by .
GE on the STGT project and the results have been very encouraging.

More COTS bindings will continue to be available for C than Ada. The number of Ada bindings
which are available is steadily increasing and the Ada pragma interface is available when bindings
are not available.

\
Page 20 Investigation of Ada vs. C

10. What would be your recommendation for language use in the SSCC and
SSTF given the desire to maximize use from Shuttle, maximize portability
across SSFP and within the SSCC/SSTF facilities, independence from hard-
ware constraints, and significant budget pressures to cut up front costs and re-
duce run out costs with minimum risk to delivery capability and schedule?
[Consider resources availability, etc.]

The Ada language was designed for the large, complex, long life-cycle, application domain. The
C language was designed for freedom, compactness and efficiency. The applications which will be
written for the SSCC more closely match the goals of Ada than C. From a language viewpoint, Ada
is the better choice. From an implementation viewpoint, C has traditionally been the best choice
due to the quality of C compilers and the relative poor quality of Ada compilers.

The quality of Ada implementations varies even today. Depending on the target hardware platform,
C may still be the only reasonable choice for large applications because a suitable Ada
implementation may not exist. Preliminary information may indicate this is still the case for large
IBM mainframes. Good Ada environments do exist, the DEC environment is one example, and
more and more quality Ada compilers are becoming available. In the case of the military standard
1750A microprocessor, Ada and FORTRAN are the only choice.

The availability of a good Ada environment is the first question which must be asked. If a good
Ada environment is not available, then C is the only choice. If a good Ada environment is available,
then which language should be used? It is conceivable that both languages should be used. Ada and
C were designed from their beginnings for different applications and they should be applied to the
applications for which they were appropriate. C was designed by Dennis Ritchie as a “relatively
'low level’ language” which is ideally suited for systems programming. Ada was designed through
an international review process for large, real-time, embedded applications. It appears that most
applications which will be integrated into the SSCC and SSTF fit the latter category and as a result
Ada should be used if a good environment is available.

The SSCC and SSTF should not select a single language unless all applications which will be
developed for those facilities are similar in nature or unless one of the languages is not a viable
option due to a lack of quality compilers. Ada and C should be applied in each facility where
appropriate to meet the priority of requirements identified in question number 10. A
characterization of the type of applications should be made for each facility, and then the
appropriate language applied to that type of application which best meets the priorities and
requirements.

-

Page 21 Investigation of Ada vs. C

BIBLIOGRAPHY

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

Booch, Grady. 1987. Software Components with Ada. Menlo Park, California,:
Benjamin/Cummings.

Horowitz, E. and J. Munson, Sept. 1984. An Expansive View of Reusable Software,
[EEE Transactions of Software Engineering, vol. SE-10 (5), p. 477,479.

Nise, N., C. McKay, D. Dillehunt, N. Kim, and C Giffin. Oct. 1985. A Reusabie
Software System, Proceedings of the AIAAJACM/NASA/IEEE Computers in
Aerospace V Conference, p. 492. Long Beach, California.

Bryne, Dan, Richard Ham, Winter 1990. Ada Versus FORTRAN Performance
Analysis Using the ACPS, ACM Ada Letters - Ada Performance Issues Volume
X, Number 3, p. 139-145. New York, New York.

Proceedings of the Third NASA Ada User’s Symposium, November 1990, NASA-JSC.

Keller, John, "When Avoiding Ada Is The Right Thing To Do", Military and
Aerospace Electronics, February 1991.

Keller, John, "Ada Is Law, So What Else Is New?", Military and Aerospace
Electronics, January 1991.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language,
Prentice Hall, 1978

Anderson, Paul and Anderson, Gail, Moving on to C++, UnixWorld, January 1991

Horowithz, Ellis, Fundamentals of Programming Languages, Computer Science
Press, 1984

Mike Feldman, George Washington University

D —————————————_———

Page 22

Investigation of Ada vs. C

~—Experiment: EXPERIMENT_ 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79
Test 1 characteristics:

Task Frequency Kilo~Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.26 %
2 4.00 16 64.00 3.26 %
3 8.00 8 64.00 3.26 %
4 16.00 4 64.00 3.26 %
5 32.00 2 64.00 3.26 %

320.00 16.32 %

Experiment step size: 1.63 %

Test 1 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
~— 2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment : EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79
Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.26 %
2 4.00 16 64.00 3.26 %
3 8.00 8 64.00 3.26 %
4 16.00 4 64.00 3.26 %
S 48.00 2 96.00 4.90 %

352.00 17.95 %

Experiment step size: 1.63 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 20.833 240 120 120 5.584

—~ HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79
Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 3.26 %
2 4.00 16 64.00 3.26 %
3 8.00 8 64.00 3.26 %
4 16.00 4 64.00 3.26 %
5 32.00 2 64.00 3.26 %

320.00 16.32 %

Experiment step size: 1.63 %

~—lest 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
S 31.250 320 0 0 0.000

Last test with no missed/skipped deadlines:
See preceding summary of test 1

Test when deadlines first missed/skipped:

Experiment:

EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79

Test 2 characteristics:

Task Frequency Kilo-wWhets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 48.00 2
Experiment step size: 1.63 %
Test 2 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 20.833 240

Kilo-wWhets Requested Workload
per second Utilization
64.00 3.26 %
64.00 3.26 %
64.00 3.26 %
64.00 3.26 %
96.00 4.90 %
352.00 17.95 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
120 120 5.584

~—¥inal test performed:
See preceding summary of test 2

Benchmark : Hartstone Benchmark, version 1.0
Compiler : Masscomp 6350 -~ C3Ada version 1.0
Target : Masscomp 6350 - dual 33 MHz 68030

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 1 of Experiment 1
Raw (non-tasking) benchmark speed in KWIPS: 1960.79

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
5 62.00 16.32 % 320.00

Highest—frequency task:

Period Deadlines Task Task
— (msec) Per Second Utilization KWIPS
31.250 32.00 3.26 % 64.00
Experiment step size: 1.63 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

Experiment: EXPERIMENT_2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per
Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-wWhets

No. (Hertz) per period per second

1 2.00 32 64.00
2 4.00 16 64.00
3 8.00 8 64.00
4 16.00 4 64.00
5 32.00 2 64.00

320.00

Experiment step size: 1.59 %

Test 1 results:

Test duration (seconds): 10.0
Task Period Met Missed
No. in msecs Deadlines Deadlines
1 500.000 20 0
2 250.000 40 0
3 125.000 80 0
4 62.500 160 0
5 31.250 316 2

Second (KWIPS): 2013.42

Requested Workload
Utilization
3.18 %

3.18 %
3.18 %
3.18 %
3.18 %

Skipped Average
Deadlines Late (msec)
0.000
0.000
0.000 —
0.000
19.257

NDNOOOO

EXxperiment:

Raw speed in Kilo

EXPERIMENT_Z
Completion on: Miss/skip 50 deadlines

Test 2 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.20 32
2 4.40 16
3 8.80 8
4 17.60 4
5 35.20 2
Experiment step size: 1.59 %
Test 2 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 454.545 23
2 227.273 45
3 113.636 89
4 56.818 177
5 28.409 353

Kilo-Whets Requested Workload
per second Utilization
70.40 3.50 %
70.40 3.50 %
70.40 3.50 %
70.40 3.50 %
70.40 3.50 %
352.00 17.48 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000

-Whetstone Instructions Per Second (KWIPS): 2013.42

Experiment :

EXPERIMENT_2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo

Test 3 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.40 32
2 4.80 16
3 9.60 8
4 19.20 4
S 38.40 2
Experiment step size: 1.59 %
Test 3 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 416.667 25
2 208.333 49
3 104.167 97
4 52.083 193
5 26.042 383

Kilo-whets
per second
76.80
76.80
76.80
76.80
76.80

Missed
Deadlines

= OoOO0OO0OO

-Whetstone Instructions Per Second (KWIPS): 2013.42

Requested Workload
Utilization

3.81
3.81
3.81

Skipped
Deadlines

HPOOOO

Late (msec)

Average

0.000
0.000
0.000
0.000
4.700

Experiment:

Raw speed in Kilo

EXPERIMENT 2
Completion on: Miss/skip 50 deadlines

Test 4 characteristics:

Task
No.

oW N

_-———----———-__--———__-_----—_——-—————---——_-_——-—---—-——--—-—-—-—————_.

Test 4 results:

Frequency

(Hertz)

2.

60

5.20

10.
20.
41.

40
80
60

Kilo-Whets
per period
32
16
8

Test duration (seconds): 10.0

Task
No.

1

2
3
4
5

Period
in msecs

384.
.308
96.
48,
24,

192

615

154
077
038

Met
Deadlines

26

52

104

196

290

Kilo-Whets Requested Workload
per second Utilization
83.20 4.13 %
83.20 4.13 %
83.20 4.13 %
83.20 4.13 %
83.20 4.13 %
416.00 20.66 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
6 6 0.214
63 63 1.537

-Whetstone Instructions Per Second (KWIPS): 2013.42

HARTSTONE BENCHMARK SUMMARY RESULTS

g
Baseline test:
Experiment: EXPERIMENT_2
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42
Test 1 characteristics:
Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %
2 4.00 16 64.00 3.18 %
3 8.00 8 64.00 3.18 %
4 16.00 4 64.00 3.18 %
5 32.00 2 64.00 3.18 %
320.00 15.89 %
Experiment step size: 1.59 %
Test 1 results:
S
Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 316 2 2 19.257

~-"Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 2 characteristics:

Task Frequency Kilo-whets

No. (Hertz) per period
1 2.20 32
2 4.40 16
3 8.80 8
4 17.60 4
S 35.20 2
Experiment step size: 1.59 %

Test 2 results:

‘est duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines
1 454 .545 23
2 227.273 45
3 113.636 89
4 56.818 177
5 28.409 353

Kilo-wWhets Requested Workload
per second Utilization
70.40 3.50 %
70.40 3.50 %
70.40 3.50 %
70.40 3.50 %
70.40 3.50 %
352.00 17.48 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000

Test when deadlines first missed/skipped: 7
See preceding summary of test 1 Ry

Final test performed:

Experiment: EXPERIMENT 2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42
Test 4 characteristics:

Task Frequency Kilo-wWhets Kilo-wWhets Requested Workload

No. (Hertz) per period per second Utilization
1 2.60 32 83.20 4.13 %
2 5.20 16 83.20 4.13 %
3 10.40 8 83.20 4.13 %
4 20.80 4 83.20 4,13 %
5 41.60 2 83.20 4.13 %
416.00 20.66 %

Experiment step size: 1.59 %

Test 4 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 384.615 26 0 0 0.000
2 192,308 52 0 0 0.000
3 96.154 104 0 0 0.000
4 48.077 196 6 6 0.214
5 24.038 290 63 63 1.537

Benchmark : Hartstone Benchmark, version 1.0
Compiler : Masscomp 6350 - C3Ada version 1.0
Target : Masscomp 6350 - dual 33 MHz 68030

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 2 of Experiment 2
Raw (non-tasking) benchmark speed in KWIPS: 2013.42

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
S 68.20 17.48 % 352.00

Highest~frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

28.409 35.20 3.50 % 70.40
Experiment step size: 1.59 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

Experiment: EXPERIMENT_ 3)
Completion on: Miss/skip 50 deadlines ~

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79
Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.26 %
2 4.00 16 64.00 3.26 %
3 8.00 8 64.00 3.26 ¢
4 16.00 4 64.00 3.26 %
5 32.00 2 64.00 3.26 %
320.00 16.32 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000 ~
4 62.500 160 0 0 0.000
S 31.250 320 0 0 0.000

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) :

Test 2 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 33
2 4,00 17
3 8.00 9
4 16.00 5
5 32.00 3
Experiment step size: 3.16 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

S 31.250 320

Kilo-Whets Requested Workload
per second Utilization
66.00 3.37 %
68.00 3.47 %
72.00 3.67 %
80.00 4.08 &
96.00 4.90 %
382.00 19.48 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000

1960.79

Experiment:

EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Sec

Test 3 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 34
2 4.00 18
3 8.00 10
4 16.00 6
5 32.00 4
Experiment step size: 3.16 %
Test 3 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
S 31.250 318

Kilo-whets
per second

68.00
72.00
80.00
96.00
128.00

Missed
Deadlines

o 0O0O0O0

ond (KWIPS):

Requested Workload

Utilization
3.47 %
3.67 %
4.08 %

4.90 %

%

1960.79

Skipped
Deadlines

HOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
11.963

Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79

Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 35 70.00 3.57 %
2 4.00 19 76.00 3.88 %
3 8.00 11 88.00 4.49 %
4 16.00 7 112.00 5.71 %
5 32.00 5 160.00 8.16 %
506.00 25.81 %

Test 4 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment : EXPERIMENT 3 ~—
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79
Test S5 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per periocd per second Utilization
1 2.00 36 72.00 3.67 %
2 4.00 20 80.00 4.08 %
3 8.00 12 96.00 4.90 %
4 16.00 8 128.00 6.53 %
5 32.00 6 192.00 9.79 %
568.00 28.97 %

Experiment step size: 3.16 %

Test 5 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 e
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79
Test 6 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 37 74.00 3.77 %
2 4.00 21 84.00 4.28 %
3 8.00 13 104.00 5.30 %
4 16.00 9 144.00 7.34 %
5 32.00 7 224.00 11.42 &

630.00 32.13 %

Experiment step size: 3.16 %

Test 6 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79

Test 7 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 38
2 4.00 22
3 8.00 14
4 16.00 10
S 32.00 8
Experiment step size: 3.16 %

Test 7 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
) 31.250 320

Kilo-Whets Requested Workload
per second Utilization

76.00 3.88 %

88.00 4.49 %
112.00 5.71 %
160.00 8.16 %
256.00 13.06 %
692.00 35.29 %

Missed Skipped Average
Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Test 8 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 39
2 4,00 23
3 8.00 15
4 16.00 11
5 32.00 9
Experiment step size: 3.16 %
Test 8 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
— 1 500.000 20
2 250.000 40
3 125.000 80
4q 62.500 160
5 31.250 314

Kilo-whets Requested Workload
per second Utilization

78.00 3.98 %

92.00 4.69 3%
120.00 6.12 %
176.00 8.98 %
288.00 14.69 %
754.00 38.45 %

Missed Skipped Average
Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

3 3 11.617

Experiment: EXPERIMENT 3 e
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79
Test 9 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 40 80.00 4.08 %
2 4.00 24 96.00 4.90 %
3 8.00 16 128.00 6.53 %
4 16.00 12 192.00 9.79 %
5 32.00 10 320.00 16.32 %

816.00 41.62 %

Experiment step size: 3.16 %

Test 9 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 e
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 241 40 39 0.488

Baseline test:

HARTSTONE BENCHMARK SUMMARY RESULTS

Experiment: EXP i
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo

ERIMENT 3

Test 1 characteristics:

_-__-—_-————_—_—————--—_—-_———_—--——_——_—————--———_—-—--—-——_——_-——_——_—

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
Experiment step size: 3.16 %
~—lest 1 results:
Test duration (seconds): 16.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320

Kilo~-Whets Requested Workload
per second Utilization
64.00 3.26 %
64.00 3.26 %
64.00 3.26 %
64.00 3.26 %
64.00 3.26 %
320.00 16.32 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000

-Whetstone Instructions Per Second (KWIPS): 1960.79

Last test with no missed/skipped deadlines:

S’
Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 1960.79
Test 7 characteristics:
Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per periocd per second Utilization
1 2.00 38 76.00 3.88 %
2 4.00 22 88.00 4.49 %
3 B.00 14 112.00 5.71 %
4 16.00 10 160.00 8.16 %
5 32.00 8 256.00 13.06 %
692.00 35.29 %
Experiment step size: 3.16 %
Test 7 results:
Test duration (seconds): 10.0
Task Period Met Missed Skipped Average ~
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 o 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

~..T@8t when deadlines first missed/skipped:

Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions per Second (KWIPS) : 1960.79
Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) pPer period per second Utilization

1 2.00 34 68.00 3.47 %
2 4.00 18 72.00 3.67 %
3 8.00 10 80.00 4.08 %
4 16.00 6 96.00 4.90 %
5 32.00 4 128.00 6.53 %

444.00 22.64 %

Experiment step size: 3.16 %

Tesat 3 results:

"est duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125,000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 318 1 1 11.963

Final test performed:

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS):

Test 9 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 40
2 4.00 24
3 8.00 16
4 16.00 12
5 32.00 10

Test 9 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 241

Kilo-Whets
per second
80.00
96.00
128.00
192.00
320.00

Missed
Deadlines
0
0
0
0
40

1960.79

Requested Workload
Utilization

4.08 %
4.90 %
6.53 %
9.79 %

%

Skipped Average

Deadlines
0
0
0
0
39

[~ Y= RNl

Late (msec)
.000
.000
.000
.000
.488

Benchmark : Hartstone Benchmark, version 1.0
Compiler : Masscomp 6350 - C3Ada version 1.0
Target : Masscomp 6350 - dual 33 MHz 68030

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 7 of Experiment 3
Raw (non-tasking) benchmark speed in KWIPS: 1960.79

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
S 62.00 35.29 % 692.00

Highest-frequency task:

Period Deadlines Task Task
{msec) Per Second Utilization KWIPS
31.250 32.00 13.06 % 256.00

Experiment step size: 3.16 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

Experiment: EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42
Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %
2 4.00 16 64.00 3.18 &%
3 8.00 8 64.00 3.18 %
4 16.00 4 64.00 3.18 %
5 32.00 2 64.00 3.18 %
320.00 15.89 %

Experiment step size: 3.18 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo

Test 2 characteristics:

Task
No.

N b WN -

__——_--_—-————--—---——-—_--_—-_--—_———-——--———-__———_—————-——-—-————--——

Frequency

(Hertz)
2.00
4.00
8.00

16.00
32.00
8.00

Test 2 resultas:

Kilo-Whets
per period
32
16

@ N o

Test duration (seconds): 10.0

Task
No.

AU WN

Period
in msecs
500.000
250.000
125.000

62.500

31.250
125.000

Met
Deadlines
20
40
80
160
320
80

Kilo~Whets Requested Workload
per second Utilization
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
384.00 19.07 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000

~Whetstone Instructions Per Second (KWIPS): 2013.42

Experiment:

EXPERIMENT_4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 3 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
6 8§.00 8
7 8.00 8
Experiment step size: 3.18 %
Test 3 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

[eNoNeNeNalNole)

Requested Workload
Utilization

3.18
3.18
3.18
3.18
3.18
3.18
3.18

Skipped
Deadlines

oY oNeNoNoRa o)

Average

Late (msec)

0.000
0.000
0.000
0.000
0.000
0.000
0.000

T —

Experiment: EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42
Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %
2 4.00 16 64.00 3.18 %
3 8.00 8 64.00 3.18 %
4 16.00 4 64.00 3.18 %
5 32.00 2 64.00 3.18 &
6 8.00 8 64.00 3.18 %
7 8.00 8 64.00 3.18 %
8 8.00 8 64.00 3.18 &

512.00 25.43 %
Experiment step size: 3.18 %

Test 4 results:

"est duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 312 4 4 0.763
6 125.000 80 0 0 0.000
7 125.000 80 0 0 0.000
8 125.000 80 0 0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines

Test 5 characteristics:

Task
No.

W DA W

Test 5 results:

Frequency

(Hertz)

2.
4.
8.
le.
32.
8.
8.
8.
8.

00
00
00
00
00
00
00
00
00

Kilo-Whets
per period
32
16

oW NS @©

Test duration (seconds): 10.0

Task
No.

W~ Wb W

Period
in msecs

500.
250.
125.

62.
.250
125.
125,
.000
125,

31

125

000
000
000
500

000
000

000

Met
Deadlines
20
40
80
160
296
80
80
80
80

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

[
COOONOCOOO

Requested Workload

Utilization

3.18
3.18
3.18
3.18
3.18
3.18
3.18
3.18

IR P I P OP IP dP dP oP

Skipped
Deadlines

[
COOCONOCOOO

Average
Late (msec)

.000
.000
.000
.000
.075
.000
.000

CooNhNOocDOOCO©

0.000

pR—

Experiment:

EXPERIMENT 4

Completion on: Miss/skip S0 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 6 characteristics:

Task Frequency Kilo-whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %
2 4.00 16 - 64.00 3.18 %
3 8.00 8 64.00 3.18 %
4 16.00 4 64.00 3.18 %
5 32.00 2 64.00 3.18 %
6 8.00 8 64.00 3.18 %
7 8.00 8 64.00 3.18 %
8 8.00 8 64.00 3.18 %
9 8.00 8 64.00 3.18 %
10 8.00 8 64.00 3.18 %
640.00 31.79 %
Experiment step size: 3.18 %
Test 6 results:
Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 295 13 12 1.282
6 125.000 80 0 0 0.000
7 125.000 80 0 0 0.000
8 125.000 80 0 0 0.000
9 125.000 80 0 0 0.000
10 125.000 80 0 0 0.000

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 7 characteristics:

Task Frequency Kilo-Whets
No. {Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8
10 8.00 8
11 8.00 8
Experiment step size: 3.18 %
Test 7 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 301
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

[eNeNoNolNoNelNoNolNoRo o

Requested Workload
Utilization
3.18 %

3.18 %

3.18 %

3.18 %

3.18 %

3.18 %

3.18 %

3.18 %

3.18 %

3.18 %

3.18 %

34.97 %
Skipped Average
Deadlines Late (msec)

0 0.000
0 0.000
0 0.000
0 0.000
9 0.488
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 8 characteristics:

Task Frequency Kilo-wWhets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
S 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8
10 8.00 8
11 8.00 8
12 8.00 8
Experiment step size: 3.18 %
T Test 8 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 71
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 62
12 125.000 80

Kilo-Whets Requested Workload
per second Utilization

64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 &
64.00 3.18 &
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
768.00 38.14 %

Missed Skipped Average

Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

1 8 941.345

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

2 2 941.345

0 0 0.000

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 9 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8
10 8.00 8
11 8.00 8
12 8.00 8
13 8.00 8
Experiment step size: 3.18 &
Test 9 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 302
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80

.'.../'
Kilo-Whets Requested Workload
per second Utilization
64.00 3.18 %
64.00 3.18 %
64.00 3.18 &
64.00 3.18 %
64.00 3.18 &
64.00 3.18 &
64.00 3.18 &
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
832.00 41.32 %
—
Missed Skipped Average
Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

9 9 2.075

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

~——

Experiment:

EXPERIMENT_ 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 10 characteristics:

Task
No.

=3
OCWD~JIA WL WN P

11
12
13
14

_-———___---——_.._—--——_-—--—--_—-————--————————_—-___-—--————_————_——_—-—

Test 10 results:

Test duration

Task
No.

Frequency Kilo-Whets
(Hertz) per period
2.00 32
4.00 16
8.00 8
16.00 4
32.00 2
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
3.18 &
(seconds): 10.0
Period Met
in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 259
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80

Kilo-Whets Requested Workload
per second Utilization

64.00 3.18 &
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
896.00 44 .50 %

Missed Skipped Average

Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

31 30 0.244

0] 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

HARTSTONE BENCHMARK SUMMARY RESULTS

—
Baseline test:
Experiment: EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42
Test 1 characteristics:
Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %
2 4.00 16 64.00 3.18 %
3 8.00 8 64.00 3.18 %
4 16.00 4 64.00 3.18 %
5 32.00 2 64.00 3.18 &
320.00 15.89 %
Experiment step size: 3.18 %
Test 1 results:
Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

~ Last test with no missed/skipped

deadlines:

Experiment: EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

Test 3 characteristics:

Task Frequency Kilo-Whets

Kilo-Whets

Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 3.18 %
2 4.00 16 64.00 3.18 %
3 8.00 8 64.00 3.18 %
4 16.00 4 64.00 3.18 %
S 32.00 2 64.00 3.18 %
6 8.00 8 64.00 3.18 %
7 8.00 8 64.00 3.18 %

448.00 22.25 %
Experiment step size: 3.18 %
Test 3 results:
_!Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000
7 125.000 80 0 0 0.000

Test when deadlines first missed/skipped:

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Test 4 characteristics:

Task Frequency

No. (Hertz)

8
16

8
8
8

@ JdAaUb WP

Test 4 results

Test duration (seconds):

2.
4.

32.

00
00
.00
.00
00
.00
.00

.00

Task Period
No. in msecs

500
250

62
31

© v e W

125

125.

125.
125.

.000
.000
000
.500
.250
000
000
.000

Kilo-Whets
per period

Met

Deadlines

20
40
80
160
312
80
80
80

10.0

Kilo-Whets

Requested Workload

per second

64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

QOO OOOCO

Utilization

3.18
3.18
3.18
3.18
.18
.18
.18

W www

Skipped

Deadlines

OO O L OO0 OO0

Average

QOO OOC0

Late (msec)
0.
0.
.000
.000
.763
.000
.000
.000

000
000

~ Final test performed:

Experiment :

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 2013.42

EXPERIMENT_4
Completion on: Miss/skip 50

Test 10 characteristics:

Task
No.

-—-—-——--____—-—-—_—_—_——_—_—_—-—_----—————-_-—_-_———-———_—_-—--———-—_

Frequency
(Hertz)
2.00
4.00
8.00
16.00
32.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00

Test 10 results:

Test duration

Task
No.

WO U bW

10
11
12
13
14

Period
in msecs
500.000
250.000
125.000
62.500
31.250
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000

Kilo~Whets
per period
32
16

D 0O WO ®OMM®N & o

(seconds): 10.0

Met
Deadlines
20
40
80
160
259
80
80
80
80
80
80
80
80
80

deadlines

Kilo-whets Requested Workload
per second Utilization

64.00 3.18 %
64.00 3.18 %
64.00 3.18 &
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
64.00 3.18 &
64.00 3.18 %
64.00 3.18 &
64.00 3.18 %
64.00 3.18 %
64.00 3.18 %
896.00 44.50 %

Missed Skipped Average

Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

31 30 0.244

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

Benchmark : Hartstone Benchmark, version 1.0
Compiler : Masscomp 6350 - C3Ada version 1.0
Target : Masscomp 6350 - dual 33 MHz 68030

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 3 of Experiment 4
Raw (non-tasking) benchmark speed in KWIPS: 2013.42

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
7 78.00 22.25 % 448.00

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
31.250 32.00 3.18 % 64.00

Experiment step size: 3.18 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

Experiment: EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

R

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28
Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %
2 4.00 16 64.00 1.43 %
3 8.00 8 64.00 1.43 %
4 16.00 4 64.00 1.43 %
S 32.00 2 64.00 1.43 %

320.00 7.15 %

Experiment step size: 0.71 %

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
o 2 250.000 40 0 0 0.000
s 3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
S 31.250 320 0 0 0.000

Experiment: EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28
Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %
2 4.00 16 64.00 1.43 %
3 8.00 8 64.00 1.43 %
4 16.00 4 64.00 1.43 %
5 48.00 2 896.00 2.14 %

352.00 7.86 %

Experiment step size: 0.71 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 20.833 480 0 0 0.000

Experiment: EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) :

Test 3 characteristics:

Task Frequency Kilo-whets

No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 64.00 2

4476.28

Test 3 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
o 1 500.000 20
e 2 250.000 40
3 125.000 80
4 62.500 160
5 15.625 477

Kilo-whets Requested Workload
per second Utilization

64.00 1.43 %

64.00 1.43 %

64.00 1.43 %

64.00 1.43 %
128.00 2.86 %
384.00 8.58 %

Missed Skipped Average
Deadlines Deadlines Late (msec)

] 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000
81 82 1.988

Baseline test:

HARTSTONE BENCHMARK SUMMARY RESULTS

Experiment:

Raw speed in Kil

EXPERIMENT 1
Completion on: Miss/skip 50 deadlines

Test 1 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
Experiment step size: 0.71 %

Test 1 results:

Test duration

Task
No.

;oW N

(sec

Period
in msecs

500
250

125.

62
31

.000
.000
000
.500
.250

onds): 10.0

Met
Deadlines

20

40

80

160

320

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines
0

0
0
0
0

o-Whetstone Instructions Per Second (KWIPS): 4476.28

Requested Workload

ygtilization
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %

7.15 %
Skipped Average
Deadlines Late (msec)
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

Last test with no missed/skipped deadlines:

T—

Experiment: EXPERIMENT_1
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28
Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %
2 4.00 16 64.00 1.43 %
3 8.00 8 64.00 1.43 %
4 16.00 4 64.00 1.43 %
5 48.00 2 86.00 2.14 %

352.00 7.86 %

Experiment step size: 0.71 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 20.833 480 0 0 0.000

Test when deadlines first missed/skipped:

Experiment:

EXPERIMENT 1

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 3 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 B8.00 8
4 16.00 4
5 64.00 2
Experiment step size: 0.71 %
Test 3 results:
Test duration (seconds): 10.0
Task Periocd Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 15.625 477

Kilo-Whets
per second
.00
.00
.00

64
64

Missed

Deadlines

0
0
0
0
81

Requested Workload
Utilization

Skipped
Deadlines
0
0
0
0
82

1.43
1.43
1.43
1.43
2.86

Late (msec)
.000
.000
.000
.000
.988

Average

HOOoOOoOOo

"inal test performed:
See preceding summary of test 3

Benchmark : Hartstone Benchmark, version 1.0
Compiler : Verdix 6.0 -> Sun SPARC
Target : Sun SPARC Station 1+ (25 MHz) - multiuser mode

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 2 of Experiment 1
Raw (non-tasking) benchmark speed in KWIPS: 4476.28

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
5 78.00 7.86 % 352.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

20.833 48.00 2.14 % 96.00
Experiment step size: 0.71 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

Experiment: EXPERIMENT 2
Completion on: Miss/skip 50 deadlines e

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91
Test 1 characteristics:

Task Frequency Kilo-Whets Kilo~Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.47 %
2 4.00 16 64.00 1.47 %
3 8.00 8 64.00 1.47 %
4 16.00 4 64.00 1.47 %
5 32.00 2 64.00 1.47 %

320.00 7.33 %

Experiment step size: 0.73 %

T o o i S o e e ! . = - ———— " - ————— o - — o —

Test 1 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000 e
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT_2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91
Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-wWhets Requested Workload

No. (Hertz) per period per second Utilization
1 2.20 32 70.40 1.61 %
2 4.40 16 70.40 1.61 %
3 8.80 8 70.40 1.61 %
4 17.60 4 70.40 1.61 %
5 35.20 2 70.40 1.61 %
352.00 8.06 %
Experiment step size: 0.73 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 454.545 23 0 0 0.000
2 227.273 45 0 0 0.000
3 113.636 88 0 0 0.000
4 56.818 177 0 0 0.000
5 28.409 350 1 1 4.000

Experiment: EXPERIMENT 2 T
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91
Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.40 32 76.80 1.76 %
2 4.80 16 76.80 1.76 %
3 9.60 8 76.80 1.76 %
4 19.20 4 76.80 1.76 %
5 38.40 2 76.80 1.76 %

384.00 8.80 %

Experiment step size: 0.73 %

Test 3 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 416.667 25 0 0 0.000
2 208.333 48 0 0 0.000 p——
3 104.167 97 0 0 0.000
4 52.083 192 0 0 0.000
S 26.042 385 0 0 0.000

Experiment: EXPERIMENT_ 2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91
Test 4 characteristics:

Task Frequency Kilo~-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.60 32 83.20 1.91 %
2 $.20 16 83.20 1.91 &
3 10.40 8 83.20 1.91 %
4 20.80 4 83.20 1.91 ¢
5 41.60 2 83.20 1.91 %
416.00 9.53 %
Experiment step size: 0.73 %

e - o o o o 7 0 o e o o o o o e v o o o o o e o e 2 o e o e o o e e e o e =

Test 4 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 384.615 26 0 0 0.000
—~ 2 192.308 53 0 0 0.000
3 96.154 104 0 0 0.000
4 48.077 208 0 0 0.000
5 24.038 414 1 1 1.000

Experiment:

EXPERIMENT_2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91

Test 5 characteristics:

—— - - - - - M A " —— T R D . - -

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.80 32
2 5.60 16
3 11.20 8
4 22,40 4
S 44 .80 2
Experiment step size: 0.73 %
Test 5 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 357.143 28
2 178.571 56
3 89.286 113
4 44.643 224
S 22.321 448

Kilo-wWhets
per second
89.60
89.60
89.60
89.60
89.60

Missed
Deadlines

(e e NN o]

Requested Workload
Utilization

2.05
2.05
2.05
2.05
2.05

Skipped
Deadlines

(o NoleNoNaol

Late (msec)
.000
.000
.000
.000
.000

Average

OO OO0

Experiment: EXPERIMENT 2
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91
Test 6 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization
1 3.00 32 86.00 2.20 %
2 6.00 16 96.00 2.20 %
3 12.00 8 96.00 2.20 %
4 24.00 4 96.00 2.20 %
S 48.00 2 96.00 2.20 %
480.00 11.00 §%

Test 6 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 333.333 30 0 0 0.000
— 2 166.667 61 0 0 0.000
3 83.333 120 0 0 0.000
4 41.667 239 1 1 6.000
5 20.833 477 1 2 25.000

Experiment:

EXPERIMENT_2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91

Test 7 characteristics:

Task Frequency Kilo-wWhets
No. (Hertz) per periocd
1 3.20 32
2 6.40 16
3 12.80 8
4 25.60 4
S 51.20 2
Experiment step size: 0.73 %
Test 7 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 312.500 32
2 156.250 64
3 78.125 128
4 39.063 256
5 19.531 512

Kilo-Whets
per second
102.
102.
102.
102.

Missed

40
40
40
40

Deadlines

[oNeoNeNeNe]

Requested Workload
Utilization

2.35
2.35
2.35
2.35

Skipped
Deadlines

[N eNeNo ol

Late (msec)

Average

0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT_2
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91

Test 8 characteristics:

Task Frequency Kilo-Whets Kilo-wWhets Requested Workload

No. (Hertz) per period per second Utilization

1 3.40 32 108.80 2.49 %
2 6.80 16 108.80 2.49 %
3 13.60 8 108.80 2.49 &
4 27.20 4 108.80 2.49 %
5 54.40 2 108.80 2.49 %

544.00 12.46 %

Experiment step size: 0.73 %

Test 8 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
—_ 1 294.118 35 0 0 0.000
2 147.059 68 0 0 0.000
3 73.529 137 0 0 0.000
4 36.765 271 1 1 11.000
5 18.382 447 48 49 1.688

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment : EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91

Test 1 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
S 32.00 2

Test 1 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

S 31.250 320

Kilo~Whets
per second
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

CoOoOo0oOoOo

Requesated Workload

Utilization

1.47
1.47
1.47
1.47
1.47

Skipped
Deadlines
0

0
0
0
0

Late (msec)
.000
.000
.000
.000
.000

Average

SOO0OOoCO

Last test with no missed/skipped deadlines:

Experiment:

EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91

Test 7 characteristicas:

Task
No.

b W N

Test 7 results:

Test duration

e

1

2
3
4
5

Task
No.

Frequency Kilo-Whets
(Hertz) per period
3.20 32
6.40 16
12.80 8
25.60 4
51.20 2
0.73 %
(seconds): 10.0
Period Met
in msecs Deadlines
312.500 32
156.250 64
78.125 128
39.063 256
19.531 512

Kilo-Whets Requested Workload
per second Utilization
102.40 2.35 %
102.40 2.35 %
102.40 2.35 %
102.40 2.35 %
102.40 2.35 %
512.00 11.73 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 ¢ 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000

Test when deadlines first missed/skipped:

Experiment: EXPERIMENT 2
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91
Test 2 characteristics:
Task Frequency Kilo~Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.20 32 70.40 1.61 %
2 4,40 16 70.40 1.61 %
3 8.80 8 70.40 1.61 %
4 17.60 4 70.40 l1.61 %
5 35.20 2 70.40 1.61 %
352.00 8.06 3%
Experiment step size: 0.73 %
Test 2 results:
Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec) e’
1 454.545 23 0 0 0.000
2 227.273 45 0 0 0.000
3 113.636 88 0 0 0.000
4 56.818 177 0 0 0.000
5 28.409 350 1 1 4.000

Final test performed:

Experiment:

EXPERIMENT 2

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4364.91

Test 8 characteristics:

Task

No.
1

U W

Test 8 results:

Test duration

Task
No.
1

2
3
4
5

Frequency Kilo-Whets
(Hertz) per period
3.40 32
6.80 16
13.60 8
27.20 4
54.40 2
0.73 %
(seconds): 10.0
Period Met
in msecs Deadlines
294.118 35
147.059 68
73.529 137
36.765 271
18.382 447

Kilo-Whets Requested Workload
per second Utilization
108.80 2.49 %
108.80 2.49 %
108.80 2.49 %
108.80 2.49 %
108.80 2.49 %
544.00 12.46 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
1 1 11.000
48 49 1.688

Benchmark : Hartstone Benchmark, version 1.0 ~’
Compiler : Verdix 6.0 -> Sun SPARC
Target : Sun SPARC Station 1+ (25 MHz) - multiuser mode

Characteristics of best test for this experiment:
{(no missed/skipped deadlines)

Test 7 of Experiment 2
Raw (non-tasking) benchmark speed in KWIPS: 4364.91

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
5 99.20 11.73 % 512.00

Highest-frequency task:

Period Deadlines Task Task
(msec) Per Second Utilization KWIPS
19.531 51.20 2.35 % 102.40

Experiment step size: 0.73 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS S

~. EXxperiment :

Raw speed in Kilo

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Test 1 characteristics:

Task
No.

U b W N

Test 1 results:

Test duration

Task
No.
1

2
— 3
4
5

Frequency Kilo-Whets
(Hertz) per period
2.00 32
4.00 16
8.00 8
16.00 4
32.00 2
1.43 %
(seconds): 10.0
Period Met
in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 320

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

SCoocooo

-Whetstone Instructions Per Second (KWIPS): 4323.39

Requested Workload
Utilization

1.48
1.48
1.48
1.48
1.48

Skipped
Deadlines
0

0
0
0
0

Late (msec)

Average

0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT_3 el
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 2 characteristics:

Task Frequency Kilo-wWhets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 33 66.00 1.53 %
2 4.00 17 68.00 1.57 %
3 8.00 9 72.00 1.67 %
4 16.00 5 80.00 1.85 %
5 32.00 3 96.00 2.22 %
382.00 8.84 %

Test 2 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 —
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
S 31.250 318 1 1 13.000

Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 3 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 34 68.00 1.57 %
2 4.00 18 72.00 1.67 %
3 8.00 10 80.00 1.85 %
4 16.00 6 96.00 2.22 %
5 32.00 4q 128.00 2.96 %

444.00 10.27 %

Experiment step size: 1.43 %

__-_—..---—-----—-——-—------_--------—----—-—---_——_-—--———----——--—_——_-

Test 3 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
—_ 1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
S 31.250 320 0 0 0.000

Experiment: EXPERIMENT 3 —r’
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 4 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 35 70.00 1.62 %
2 4.00 19 76.00 1.76 %
3 8.00 11 88.00 2.04 %
4 16.00 7 112.00 2.59 %
5 32.00 5 160.00 3.70 %
506.00 11.70 %

Experiment step size: 1.43 %

Test 4 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 ~—
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

T
Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 5 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 36 72.00 1.67 %
2 4.00 20 80.00 1.85 %
3 8.00 12 96.00 2.22 %
4 16.00 8 128.00 2.96 %
5 32.00 6 192.00 4.44 %
568.00 13.14 %

——_____-——-————-————-_--——-—--——-—_----—-—___--—-—_---———-—-—-—_-—_——_

Test S results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
- 2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Test 6 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 37
2 4.00 21
3 8.00 13
4 16.00 9
5 32.00 7
Experiment step size: 1.43 %
Test 6 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
) 31.250 318

Kilo-Whets
per second
74.00
84.00
104.00
144.00
224.00

Missed
Deadlines

HOOOOo

Requested Workload
Utilization

1.71
1.94
2.41
3.33

Skipped
Deadlines

HOOOO

Late (msec)

Average

0.000
0.000
0.000
0.000
7.000

Experiment: EXPERIMENT_ 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 7 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 38 76.00 1.76 %
2 4.00 22 88.00 2.04 §
3 8.00 14 112.00 2.59 %
4 16.00 10 160.00 3.70 %
5 32.00 8 256.00 5.92 %

692.00 16.01 %

Experiment step size: 1.43 %

v D s - - - S S e - . e - . - - — ——— —— - - - - = — -

Tesat 7 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
~ 1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
) 31.250 320 0 0 0.000

Experiment : EXPERIMENT 3 N
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-~Whetstone Instructions Per Second (KWIPS): 4323.39

Test 8 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 39 78.00 1.80 %
2 4.00 23 92.00 2.13 %
3 8.00 15 120.00 2.78 %
4 16.00 11 176.00 4.07 %
5 32.00 9 288.00 6.66 %

754.00 17.44 %

Experiment step size: 1.43 %

Test 8 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 p——
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
S 31.250 320 0 0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Test 9 characteristics:

Task
No.

N W

Test 9 results:

Test duration

Task
No.

1

2
3
4
5

Frequency Kilo-Whets
(Hertz) per period
2.00 40
4.00 24
8.00 16
16.00 12
32.00 10
1.43 %
(seconds): 10.0
Period Met
in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 320

Kilo-Whets Requested Workload
per second Utilization

80.00 1.85 %

96.00 2.22 %
128.00 2.96 %
192.00 4.44 %
320.00 7.40 %
816.00 18.87 %

Missed Skipped Average
Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo~-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 10 characteristics:

Task Frequency Kilo-wWhets

No. (Hertz) per period
1 2.00 41
2 4.00 25
3 8.00 17
4 16.00 13
5 32.00 11
Experiment step size: 1.43 %

- - — - - T ————— - . A - D N A S e e - - - - -

Test 10 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 320

Kilo~Whets
per second
82.00
100.00
136.00
208.00
352.00

Missed
Deadlines

[eNeNoNe N

Requested Workload
Utilization

1.90
2.31
3.15
4.81

Skipped
Deadlines

QOO O0OO0O

Late (msec)

Average

0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 11 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hexrtz) per period per second Utilization

1 2.00 42 84.00 1.94 3%
2 4.00 26 104.00 2.41 %
3 8.00 18 144.00 3.33 %
4 16.00 14 224.00 5.18 §
5 32.00 12 384.00 8.88 %

940.00 21.74 %

Experiment step size: 1.43 %

Test 11 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT 3 —r
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 12 characteristics:

Task Frequency Kilo~Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 43 86.00 1.99 %
2 4.00 217 108.00 2.50 %
3 8.00 19 152.00 3.52 %
4 16.00 15 240.00 5.55 %
S 32.00 13 416.00 9.62 %
1002.00 23.18 %

Test 12 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 R
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
S 31.250 320 0 0 0.000

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructiona Per Second (KWIPS): 4323.39
Test 13 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 44 88.00 2.04 %
2 4.00 28 112.00 2.59 %
3 8.00 20 160.00 3.70 %
4 16.00 16 256.00 5.92 %
5 32.00 14 448.00 10.36 %
1064.00 24.61 %
Experiment step size: 1.43 %

Test 13 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
. 1 500.000 20 0 0 0.000
el 2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 318 1 1 8.000

Experiment : EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4323.39
Test 14 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hert z) per period per second Utilization
1 2.00 45 80.00 2.08 %
2 4.00 29 116.00 2.68 %
3 8.00 21 168.00 3.89 %
4 16.00 17 272.00 6.29 %
S 32.00 15 480.00 11.10 %
1126.00 26.04 %

Test 14 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 15 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 46 92.00 2.13 %
2 4.00 30 120.00 2.78 %
3 8.00 22 176.00 4.07 %
4 16.00 18 288.00 6.66 %
5 32.00 16 512.00 11.84 %
1188.00 27.48 %
Experiment step size: 1.43 %
Test 15 results:
Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 $00.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 318 1 1 20.000

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 16 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 47
2 4.00 31
3 8.00 23
4 16.00 19
S 32.00 17

Test 16 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

S 31.250 320

Kilo-Whets
per second
34.00
124.00
184.00
304.00
544.00

Missed
Deadlines

OO0 QCO

Requested Workload
Utilization

2.17 %
2.87 %
4.26 %
7.03 %

]

Skipped Average

Deadlines Late

[oNeNoNo N

[oNeNolNeNo)]

(msec)

.000
.000
.000
.000
.000

Experiment: EXPERIMENT_ 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 17 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 48
2 4.00 32
3 8.00 24
4 16.00 20
5 32.00 18
Experiment step size: 1.43 §

Test 17 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

S 31.250 318

Kilo-wWhets
per second

96.00
128.00
192.00
320.00
576.00

Missed
Deadlines

HOOOOo

Requested Workload

Utilization
2.22 %
2.96 %
4.44 %
7.40 %

13.32 %

30.35 %
Skipped Average
Deadlines Late (msec)
0 0.000
0 0.000
0 0.000
0 0.000
1 20.000

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS):

Test 18 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 49
2 4.00 33
3 8.00 25
4 16.00 21
5 32.00 19
Experiment step size: 1.43 &

Test 18 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 320

Kilo-Whets Requested Workload
per second Utilization
98.00 2.27 %
132.00 3.05 %
200.00 4.63 %
336.00 7.77 %
608.00 14.06 %
1374.00 31.78 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0o - 0.000
0 0 0.000
0 0 0.000
0 0 0.000
] 0 0.000

4323.39

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 19 characteristics:

Task Frequency Kilo-wWhets

No. (Hertz) per period
1 2.00 50
2 4.00 34
3 8.00 26
4 16.00 22
5 32.00 20

Kilo-Whets
per second
100.
136.
208.
352.

00
co
00
00

Requested Workload
Utilization
2.31 %

3.15 %
4.81 %
%
%

Test 19 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

S 31.250 318

Missed

Deadlines

O OoOOOo

Skipped Average
Deadlines Late (msec)
0.000
0.000
0.000
0.000
3.000

HOOCOO

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 20 characteristics:

Task Frequency Kilo-wWhets

No. (Hertz) per period
1 2.00 51
2 4.00 35
3 8.00 27
4 16.00 23
5 32.00 21
Experiment step size: 1.43 %

Test 20 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

S 31.250 320

Kilo-Whets

per second

102.00
140.00
216.00
368.00
672.00

Missed
Deadlines

QO OO0

Requested Workload

Utilization

2.36 %
3.24 %
5.00 %
8.51 %

%

Skipped Average

Deadlines Late (msec)
.000
.000
.000
.000
.000

[oNoNeNe e

QO OO0

rExperiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 21 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 52 104.00 2.41 %
2 4.00 36 144.00 3.33 %
3 8.00 28 224.00 5.18 %
4 16.00 24 384.00 8.88 %
5 32.00 22 704.00 16.28 %

1560.00 36.08 %

Experiment step size: 1.43 %

Test 21 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 318 1 1 1.000

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 22 characteristics:

Task Frequency Kilo-whets

No. (Hertz) per period
1 2.00 53
2 4.00 37
3 8.00 29
4 16.00 25
5 32.00 23
Experiment step size: 1.43 %

Test 22 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 320

Kilo-Whets
per second
106.
148.
.00

232

400.

Missed

00
00

00

Deadlines

0

[N ool

Requested Workload

Utilization
2.45 %
3.42 %
5.37 &
9.25 %

17.02 %

37.52 %
Skipped Average
Deadlines Late (msec)
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

T

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 23 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 54
2 4,00 38
3 8.00 30
4 16.00 26
5 32.00 24
Experiment step size: 1.43 %

Kilo~Whets
per second

108.00
152.00
240.00
416.00
768.00

Requested Workload

Utilization

2.50
3.52
5.55

Test 23 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
—~— 1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320

Missed
Deadlines

OCOOOCO

Skipped

e NeNolNelNel

Average
Deadlines Late (msec)

0.000
0.000
0.000
0.000
0.000

Experiment:

Completion on: Miss/skip 50

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

EXPERIMENT_3

Test 24 characteristics:

e e o i o T e 2 = = o D LD o e e R SR SRS S

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 55
2 4.00 39
3 8.00 31
4 16.00 27
5 32.00 25
Experiment step size: 1.43 %
Test 24 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320

deadlines

Kilo-wWhets
per second
110.00
156.00
248.00
432.00
800.00

Missed
Deadlines

QOO OO0OO0

Requested Workload
Utilization

2.54
3.61
5.74
9.99
18.50

Skipped

Deadlines Late (msec)

OO0

Average

0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 25 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 56 112.00 2.59 %
2 4.00 40 160.00 3.70 %
3 8.00 32 256.00 5.92 %
4 16.00 28 448.00 10.36 %
5 32.00 26 832.00 19.24 %

1808.00 41.82 %

Experiment step size: 1.43 %

Test 25 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

C-3

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 26 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 57
2 4.00 41
3 8.00 33
4 16.00 29
5 32.00 27

Test 26 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 320

Kilo-Whets
per second
.00
164.
264.
464.

114

Missed

00
0o
00

Deadlines

COQQOOQ

Requested Workload
Utilization

Skipped
Deadlines
0

[eNeleNol

.64 %
.79

Average

Late

(msec)
0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 27 characteristics:

Task Frequency Kilo~-Whets Kilo~wWhets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 58 116.00 2.68 %
2 4.00 42 168.00 3.89 %
3 8.00 34 272.00 6.29 %
4 16.00 30 480.00 11.10 %
5 32.00 28 896.00 20.72 %

1932.00 44.69 %

Experiment step size: 1.43 %

Test 27 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Test 28 characteristics:

Task Frequency Kilo-Whets
No. (Hextz) per period
1 2.00 59
2 4.00 43
3 8.00 35
4 16.00 31
5 32.00 29
Experiment step size: 1.43 %
Test 28 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 318

Kilo-Whets Requested Workload
per second Utilization
118.00 2.73 %
172.00 3.98 %
280.00 6.48 %
496.00 11.47 %
928.00 21.46 %
1994.00 46.12 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
1 1 2.000

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 29 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 60

2 4.00 44

3 8.00 36

4q 16.00 32

5 32.00 30

Test 29 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320

Kilo-Whets
per second
120.00
176.00
288.00
512.00
960.00

Missed
Deadlines
0

0
0
0
0

Requested Workload

Utilization

2.78 %
4.07
6.66
11.84
22.20

Skipped Average

Deadlines

OCoOoOoCcoo

(oo NaNeNe)

Late (msec)
.000
.000
.000
.000
.000

Experiment:
Completion on: Miss/skip 50 deadlines

EXPERIMENT_3

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 30 characteristics:

Task
No.

o W

Experiment step size:

Frequency

(Hertz)
2.00
4.00

8.
16.

00
00

32.00

Kilo-Whets
per period
61
45
37
33
31

1.43 %

Kilo-Whets
per second
.00
180.
296.
.00
.00

122

00
00

Requested Workload
Utilization
2.82 %

4.16 %
6.85 %
12.21 %
22.94 %

Test 30 results:

Test duration (seconds): 10.0

Task
No.

1

2
3
4
5

Period
in msecs

500
250

.000
.000
125.
62.
31.

000
500
250

Met
Deadlines

20

40

80

158

318

Missed

Deadlines

0

0
0
1
1

Skipped Average
Deadlines Late (msec)
.000 o
.000 ~
.000
.000
.000

OO0 0o
NNO OO

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 31 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 62
2 4.00 46
3 8.00 38
4 16.00 34
5 32.00 32
Experiment step size: 1.43 %
Test 31 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320

Kilo-Whets Requested Workload
per second Utilization
124.00 2.87 %
184.00 4.26 %
304.00 7.03 %
544.00 12.58 %
1024.00 23.69 %
2180.00 50.42 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 o] 0.000
0 0 0.000
0 0 0.000

Experiment:

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 32 characteristics:

Task
No.

s W

Kilo-Whets
per second
126.00
188.00
312.00
560.00
1056.00

Requested Workload
Utilization
2.91 %

4.35 %
7.22 %
12.95 %
24.43 %

Test 32 results:

Test duration

Task
No.
1

2
3
4
5

Frequency Kilo-Whets
(Hertz) per period
2.00 63
4.00 47
8.00 39
16.00 35
32.00 33
1.43 %
(seconds): 10.0
Period Met
in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 318

Missed
Deadlines

HOOOO

Skipped Average
Deadlines Late (msec)
0.000
0.000
0.000
0.000

21.000

- O OO0

p—

Experiment : EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 33 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 64 128.00 2.96 %
2 4.00 48 192.00 4.44 %
3 8.00 40 320.00 7.40 %
4 16.00 36 576.00 13.32 %
5 32.00 34 1088.00 25.17 %

2304.00 53.29 %

Experiment step size: 1.43 %

Test 33 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
~ 2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT_3 g
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 34 characteristics:

Task Frequency Kilo-Whets Kilo-wWhets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 65 130.00 3.01 %
2 4.00 49 196.00 4.53 %
3 8.00 41 328.00 7.59 %
4 16.00 37 592,00 13.69 %
5 32.00 35 1120.00 25.91 %

2366.00 54.73 %

Experiment step size: 1.43 %

--————--———-—--——_-————_----__-__-—__-——---——_-—-_—-—_——----——---——-——-_

Test 34 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0] 0.000 S’
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 318 1 1 6.000

R

Experiment: EXPERIMENT_ 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 35 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 66 132.00 3.05 %
2 4.00 50 200.00 4.63 %
3 8.00 42 336.00 7.77 %
4 16.00 38 608.00 14.06 %
5 32.00 36 1152.00 26.65 %

2428.00 56.16 %

Experiment step size: 1.43 %

Test 35 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment:

EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 36 characteristics:

Experiment step size:

Task
No.

[V Y- VI S o

Frequency
(Hertz)
2.00
4.00
8.00
16.00
32.00

Test 36 results:

Kilo-Whets
per period
67
51
43
39
37

Test duration (seconds): 10.0

Task
No.

o W N

Period
in msecs
500.000
250.000
125.000

62.500

31.250

Met
Deadlines

20

40

80

160

318

Kilo-Whets
per second
134.
204.
344,
624.

Missed

00
00

Deadlines

HOOOO

Requested Workload
Utilization
3.10 %

4.72 %
7.96 %
14.43 %
27.39 %

Skipped Average
Deadlines Late (msec)
0.000
0.000
0.000
0.000
26.000

HOOOCO

Experiment:

EXPERIMENT__3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 37 characteristics:

Task
No.

[I - VS I N I S

Test 37 results:

Test duration

Task
No.

1

Frequency Kilo-Whets Kilo-Whets Requested Workload
(Hertz) per period per second Utilization
2.00 68 136.00 3.15 &
4.00 52 208.00 4.81 %
8.00 44 352.00 8.14 %
16.00 40 640.00 14.80 %
32.00 38 1216.00 28.13 %
2552.00 59.03 %
1.43 %
(seconds): 10.0
Period Met Missed Skipped Average
in msecs Deadlines Deadlines Deadlines Late (msec)
500.000 20 0 0 0.000
250.000 40 0 0 0.000
125.000 80 0 0 0.000
62.500 160 0 0 0.000
31.250 320 0 0 0.000

2
3
4
5

Experiment: EXPERIMENT_ 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 38 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 69
2 4,00 53
3 8.00 45
4 16.00 41
5 32.00 39
Experiment step size: 1.43 %

Test 38 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 320

Kilo-Whets
per second
.00
212.
360.
656.

138

Missed

Deadlines

0

[eNolele)

Requested Workload
Utilization

3.19
4.90 %
8.33 %
%
%

e

15.17
28.87

Skipped Average

Deadlines Late (msec)

0

[N ool

0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 39 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 70 140.00 3.24 %
2 4.00 54 216.00 5.00 %
3 8.00 46 368.00 8.51 %
4 16.00 42 672.00 15.54 %
5 32.00 40 1280.00 29.61 §
2676.00 61.90 %

Test 39 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment:

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 40 characteristics:

Task
No.

Wb W N

Kilo-Whets
per second
142.
220.
376.
.00

00
00
00

Requested Workload
Utilization
3.28 %

5.09

Test 40 results:

Test duration

Task
No.

1

2
3
4
5

Frequency Kilo-Whets
(Hertz) per period
2.00 71
4.00 55
8.00 47
16.00 43
32.00 41
1.43 %
(seconds): 10.0
Period Met
in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 320

Missed

Deadlines

OO OCOO

Skipped Average
Deadlines Late (msec)
0.000 o
0.000 ~
0.000
0.000
0.000

OO0 OO

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 41 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 72 144.00 3.33 %
2 4.00 56 224,00 5.18 %
3 8.00 48 384.00 8.88 %
4 16.00 44 704.00 16.28 %
5 32.00 42 1344.00 31.09 %
2800.00 64.76 %

Test 41 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 $00.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT_3 p—
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 42 characteristics:

Task Frequency Kilo-Whets Kilo~Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 73 146.00 3.38 %
2 4.00 57 228.00 5.27 %
3 8.00 49 392.00 9.07 %
4 16.00 45 720.00 16.65 %
5 32.00 43 1376.00 31.83 %

2862.00 66.20 %

Experiment step size: 1.43 %

Test 42 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 po—
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment:

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 43 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 74
2 4.00 58
3 8.00 50
4 16.00 46
5 32.00 44
Experiment step size: 1.43 %
Test 43 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 78
4 62.500 160
S 31.250 318

Kilo-Whets Requested Workload
per second Utilization
148.00 3.42 %
232,00 5.37 %
400.00 9.25 %
736.00 17.02 &
1408.00 32.57 %
2924.00 67.63 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
1 1 2.000
0 0 0.000
1 1 26.000

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 44 characteristics:

Task Frequency Kilo~Whets

No. (Hertz) per period
1 2.00 75
2 4.00 59
3 8.00 51
4 16.00 47
5 32.00 45

Experiment step size: 1.43 %

Test 44 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 320

Kilo-Whets
per second
150.00
236.00
408.00
752.00
1440.00

Missed
Deadlines

oo NeNoNe]

Requested Workload
Utilization

3.47
5.46
9.44
17.39
33.31

Skipped
Deadlines

OCOOOCO

Average

Late (msec)

0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 45 characteristics:

Task Frequency Kilo-Whets Kilo-wWhets Requested Workload

No. (Hertz) per period . per second Utilization
1 2.00 76 152.00 3.52 %
2 4.00 60 240.00 ’ 5.55 %
3 8.00 52 416.00 9.62 %
4 16.00 48 768.00 17.76 %
5 32.00 46 1472.00 34.05 %
3048.00 70.50 %
Experiment step size: 1.43 %

Test 45 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
. 1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 158 1 1 25.000
5 31.250 318 1 1 28.000

Experiment: EXPERIMENT_ 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 46 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 77
2 4.00 61
3 8.00 53
4 16.00 49
S 32.00 47
Experiment step size: 1.43 %

Test 46 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 320

Kilo-Whets Requested Workload
per second Utilization
154.00 3.56 %
244.00 5.64 %
424.00 9.81 %
784.00 18.13 %
1504.00 34.79 §
3110.00 71.93 §
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0

0.000

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 47 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 78
2 4.00 62
3 8.00 54
4 16.00 50
5 32.00 48

Test 47 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
~ 1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 158
5 31.250 318

Kilo-Whets Requested Workload
per second Utilization
156.00 3.61 %
248.00 5.74 %
432.00 9.99 §
800.00 18.50 %
1536.00 35.53 %
3172.00 73.37 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
1 1 27.000
1 1 20.000

Experiment : EXPERIMENT_ 3 —~——
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 48 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 79 158.00 3.65 %
2 4.00 63 252.00 5.83 %
3 8.00 55 440.00 10.18 %
4 16.00 51 816.00 18.87 %
5 32.00 49 1568.00 36.27 %

3234.00 74.80 %

Experiment step size: 1.43 %

Test 48 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 A
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) :

EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Test 49 characteristics:

Task Frequency Kilo-whets
No. (Hertz) per period
1 2.00 80
2 4.00 64
3 8.00 56
4 16.00 52
5 32.00 50
Experiment step size: 1.43 %
Test 49 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
~ 1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 318

Kilo-Whets Requested Workload
per second Utilization
160.00 3.70 %
256.00 5.92 %
448.00 10.36 %
832.00 19.24 %
1600.00 37.01 %
3296.00 76.24 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
1 1 9.000

4323.39

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Test 50 characteristics:

Task
No.

(€ I - PV S I o

——__...._——_—_..-—————---—-_---_—-_--__-_-—-————-——--—-——--_-—-_—-———————-

Frequency

(Hexrtz)

2.
4.
8.
16.
32.

00
00
00
00
00

Test 50 results:

Test duration

Task
No.
1

2
3
4
5

Period
in msecs

500
250

125.
.500
.250

62
31

.000
.000

000

Kilo-Whets
per periocd
81
65
57
53
51

(seconds): 10.0

Met
Deadlines

20

40

80

160

320

Kilo-Whets Requested Workload
per second Utilization
162.00 3.7 %
260.00 6.01 %
456.00 10.55 %
848.00 19.61 %
1632.00 37.75 %
3358.00 77.67 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000

Experiment:

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 51 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 82
2 4.00 66
3 8.00 58
4 16.00 54
5 32.00 52
Experiment step size: 1.43 %
Test 51 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 158
5 31.250 318

Kilo-wWhets Requested Workload
per second Utilization
164.00 3.79 %
264.00 6.11 %
464.00 10.73 %
864.00 19.98 %
1664.00 38.49 %
3420.00 79.10 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
] 0 0.000
0 0 0.000
1 1 2.000
1 1 17.000

Experiment: EXPERIMENT 3 N

Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 52 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 83 166.00 3.84 %
2 4.00 67 268.00 6.20 %
3 8.00 59 472.00 10.92 %
4 16.00 55 880.00 20.35 %
5 32.00 53 1696.00 39.23 %

3482.00 80.54 %

Experiment step size: 1.43 %

Test 52 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000 ~
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

— Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 53 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 84 168.00 3.89 %
2 4.00 68 272.00 6.29 %
3 8.00 60 480.00 11.10 %
4 16.00 56 896.00 20.72 %
5 32.00 54 1728.00 39.97 %

3544.00 81.97 %

Experiment step size: 1.43 %

Test 53 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment:

EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 54 characteristics:

Task
No.

N WK

Test 54 results:

Test duration

Task
No.
1

2
3
4
5

Frequency Kilo-Whets Kilo-Whets
(Hertz) per period per second
2.00 85 170.00
4,00 69 276.00
8.00 61 488.00
16.00 57 912.00
32.00 55 1760.00

3606.00
1.43 %
(seconds): 10.0
Period Met Missed
in msecs Deadlines Deadlines
500.000 20 0
250.000 40 0
125.000 80 0
62.500 160 0
31.250 320 0

Requested Workload

Utilization

3.93
6.38
11.29
21.09
40.71

Skipped
Deadline

[~ NeoloNoeNo

8

Average

OO0 0O0O0

Late (msec)
.000
.000
.000
.000
.000

 Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 55 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 86 172.00 3.98 %
2 4.00 70 280.00 6.48 %
3 8.00 62 496.00 11.47 %
4 16.00 58 928.00 21.46 %
5 32.00 56 1792.00 41.45 %

3668.00 84.84 %

Experiment step size: 1.43 %

Test 55 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 56 characteristics:

Task Frequency Kilo-Whets Kilo-whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 87 174.00 4.02 %
2 4.00 71 284.00 6.57 %
3 8.00 63 504.00 11.66 %
4 16.00 59 944.00 21.83 %
S 32.00 57 1824.00 42.19 %

3730.00 86.27 %

Experiment step size: 1.43 %

Test 56 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 302 9 9 0.222

Experiment: EXPERIMENT_ 3
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 57 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 88 176.00 4.07 %
2 4.00 72 288.00 6.66 %
3 8.00 64 512.00 11.84 %
4 16.00 60 960.00 22.20 %
5 32.00 58 1856.00 42.93 %
3792.00 87.71 %

Test 57 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
— 1 500.000 18 1 1 1.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Experiment: EXPERIMENT_3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS):

Test 58 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 89
2 4.00 73
3 8.00 65
4 16.00 61
5 32.00 59
Experiment step size: 1.43 %

Test 58 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 38

3 125.000 80

4 62.500 158

5 31.250 318

Kilo-Whets
per second
178.00
292.00
520.00
976.00
1888.00

Missed

Deadlines Deadlines

OO

4323.39

Requested Workload
Utilization
4.12 %

6.75 %

12.03 %

22.57 %

43.67 %

89.14 §

Skipped Average
Late (msec)

0 0.000

1 70.000

0 0.000

1 34.000

1 31.000

Experiment:

EXPERIMENT 3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 59 characteristics:

Task
No.

Nob W N

Test 59 results:

Test duration

Task
No.

1

2
3
4
S

Frequency Kilo-Whets
(Hertz) per period
2.00 90
4.00 74
8.00 66
16.00 62
32.00 60
1.43 %
(seconds): 10.0
Period Met
in msecs Deadlines
500.000 14
250.000 32
125.000 80
62.500 160
31.250 320

Kilo-Whets Requested Workload
per second Utilization
180.00 4.16 %
296.00 6.85 %
528.00 12.21 %
992.00 22.94 %
1920.00 44.41 %
3916.00 90.58 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
3 3 40.333
4 4 49.250
0 0 0.000
0 0 0.000
0 0 0.000

Experiment:
Completion on: Misa/skip 50 deadlines

(SRR OV I (ST

EXPERIMENT 3

Test 60 characteristics:

Frequency

(Hertz)
2.00
4.00
8.00
16.00
32.00

Test 60 results:
Test duration (seconds):

Period
in msecs

.000
.000
.000
.500
.250

Kilo-Whets
per period

91
75
67
63
61

10.0

Met
Deadlines
10

40

80

140
311

Kilo-Whets
per second
182.
300.
536.
1008.
1952.

Missed

00
00
00
00
00

Deadlines

5
0
0
10
4

Skipped
Deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Requested Workload
Utilization

4.21
6.94
12.40
23.32
45.15
82.01

Average

Late (msec)

200

.000

000

300

000

Experiment : EXPERIMENT_ 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 61 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 92
2 4.00 76
3 8.00 68
4 16.00 64
5 32.00 62

Test 61 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 0

2 250.000 36

3 125.000 80

4 62.500 160

5 31.250 320

Kilo-Whets Requested Workload
per second Utilization
184.00 4.26 %
304.00 7.03 %
544.00 12.58 %
1024.00 23.69 %
1984.00 45.89 %
4040.00 93.45 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
4 16 1812.750
2 2 69.500
0 0 0.000
0 0 0.000
0 0 0.000

Experiment: EXPERIMENT_ 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 62 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 93
2 4.00 77
3 8.00 69
4 16.00 65
5 32.00 63
Experiment step size: 1.43 %

Test 62 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines
1 500.000 3
2 250.000 10
3 125.000 56
4 62.500 158
5 31.250 318

Kilo-Whets
per second
186.00
308.00
552.00
1040.00
2016.00

Missed
Deadlines
9
15
12
1
1

Requested Workload

Utilization
4.30 %
7.12 %

12.77 %
24.06 %
46.63 %

Skipped Average

Deadlines Late (msec)

8 176.
15 56.
12 1

1 12.

1 29.

222
000

.750

0oo
000

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-wWhetstone Instructions Per Second (KWIPS): 4323.39
Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.48 %
2 4.00 16 64.00 1.48 %
3 8.00 8 64.00 1.48 %
4 16.00 4 64.00 1.48 %
5 32.00 2 64.00 1.48 %

320.00 7.40 %

Experiment step size: 1.43 %

Test 1 results:

\'Test duration (seconds): 10.0

Task Period Met Missed Skipped Average

No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS):

Test 55 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 86
2 4.00 70
3 8.00 62
4 16.00 58
5 32.00 56

Test 55 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

S 31.250 320

Kilo-Whets
per second
172.
280.
496.
928.
1792.

Missed

00
00
00
00
00

Deadlines

0

C O OO

4323.39

Requested Workload

Utilization
.98 %
.48 %
.47 %
%
%

Skipped
Deadlines
0

o0 oo

.46

Average

Late

(v RoNeNe N

(msec)

.000
.000
.000
.000
.000

—

lest when deadlines first missed/skipped:

Experiment: EXPERIMENT 3

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39

Test 2 characteristics:

Task Frequency Kilo-Whets

No. (Hertz) per period
1 2.00 33
2 4.00 17
3 8.00 9
4 16.00 5
5 32.00 3

Test 2 results:

Test duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 318

Kilo-Whets Requested Workload
per second Utilization
66.00 1.53 &
68.00 1.57 &
72.00 1.67 %
80.00 1.85 %
96.00 2.22 %
382.00 8.84 %
Missed Skipped Average
Deadlines Deadlines Late (msec)
0 0 0.000
0 0 0.000
0 0 0.000
0 0 0.000
1 1 13.000

Final test performed:

Experiment: EXPERIMENT_3
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4323.39
Test 62 characteristics:
Task Frequency Kilo-Whets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 93 186.00 4.30 %
2 4.00 77 308.00 7.12 %
3 8.00 69 552.00 12.77 %
4 16.00 65 1040.00 24.06 %
5 32.00 63 2016.00 46.63 %
4102.00 94.88 %
Experiment step size: 1.43 %
Test 62 results:
Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec) -
1 500.000 3 9 8 176.222
2 250.000 10 15 15 56.000
3 125.000 56 12 12 1.750
4 62.500 158 1 1 12.000
5 31.250 318 1 1 29.000

Benchmark : Hartstone Benchmark, version 1.0
Compiler : Verdix 6.0 -> Sun SPARC
Target ! Sun SPARC Station 1+ (25 MHz) - multiuser mode

Characteristics of best test for this experiment:
(no missed/skipped deadlines)

Test 55 of Experiment 3

Raw (non-tasking) benchmark speed in KWIPS: 4323.39

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
5 62.00 84.84 % 3668.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

31.250 32.00 41.45 % 1792.00
Experiment step size: 1.43 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

~— Experiment: EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28
Test 1 characteristics:

Task Frequency Kilo-wWhets Kilo~-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %
2 4.00 16 64.00 1.43 %
3 8.00 8 64.00 1.43 &%
4 16.00 4 64.00 1.43 %
5 32.00 2 64.00 1.43 &

320.00 7.15 %

Experiment step size: 1.43 %

Test 1 results:

Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
_— 2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
S 31.250 320 0 0 0.000

Experiment:
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4

Test 2 characteristics:

Task Frequency Kilo-Whets Kilo-Whets
No. (Hertz) per period per second
1 2.00 32 64.00
2 4.00 16 64.00
3 8.00 8 64.00
4 16.00 4 64.00
5 32.00 2 64.00
6 8.00 8 64.00
384.00
Experiment step size: 1.43 %
Test 2 results:
Test duration (seconds): 10.0
Task Period Met Missed
No. in msecs Deadlines Deadlines
1 500.000 20 0
2 250.000 40 0
3 125.000 80 0
4 62.500 160 0
5 31.250 320 0
6 125.000 80 0

Requested Workload

Utilization

1.43
1.43
1.43
1.43
1.43
1.43

Skipped

Deadli

OCOOOO0OO

nes Late (msec)
.000
.000
.000
.000
.000
.000

Average

CO OO OoOO

Experiment:

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 3 characteristics:

Task
No.
1

N oy e W

Frequency

(Hertz)

2

4.

8
16
32

8.

8

.00
00
.00
.00
.00
00
.00

Test 3 results:

Test duration

— Task
No.
1

2
3
4
5
6
7

Kilo-Whets
per period

32

1

(seconds): 1

Period
in msecs

500
250

125.
62.
31.

125.

125

.000
.000
000
500
250
000
.000

Met

6
8

[oo e <IN \0 IV~

0

.0

Deadlines

20
40
80
160
320
80
80

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

= NeeNeNoNeNol

Requested Workload
Utilization
1.43 &

1.43 3
1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

10.01 3%
Skipped Average
Deadlines Late (msec)
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 4 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
S 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
Experiment step size: 1.43 %
Test 4 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
S 31.250 318
6 125.000 80
7 125.000 80
8 125.000 80

Kilo-Whets
per second
64.
64.
64.
64.
64.
64.

64

Missed

00
00
00
00
00
00

.00
64.

00

Deadlines

QOO HOOOO

Requested Workload

Utilization

1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

Skipped
Deadlines

COOKFH OOOO

Late (msec)
.000
.000
.000
.000
.000
.000
.000
.000

Average

OO OMNOOOO

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Test 5 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period

1 2.00 32

2 4.00 16

3 8.00 8

4 16.00 4

5 32.00 2

6 8.00 8

7 8.00 8

8 8.00 8

9 8.00 8
Experiment step size: 1.43 %

Test 5 results:

~—- lest duration (seconds): 10.0

Task Period Met
No. in msecs Deadlines

1 500.000 20

2 250.000 40

3 125.000 80

4 62.500 160

5 31.250 320

6 125.000 80

7 125.000 80

8 125.000 80

9 125.000 80

Kilo-Whets
per second
.00
.00
64.
64.
64.
64.

64
64

Missed

00
0o
00
00

Deadlines

[=ReNelNoNoNoNoNo Nl

Requested Workload
Utilization
1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

12.87 %
Skipped Average
Deadlines Late (msec)

0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Test 6 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8
10 8.00 8
Experiment step size: 1.43 %
Test 6 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

[=NoNeoNaoNeNeloloRollo)

Requested Workload
Utilization
1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 %

1.43 &%

14.30 %
Skipped Average
Deadlines Late (msec)

0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

Experiment:

EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 7 characteristics:

.-—————.—_—_—_—_—---—_———----—_—_--—_-_..._-_-.-_—_-——————_—-—.——_——-—_—__..__

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8
10 8.00 8
11 8.00 8
Experiment step size: 1.43 %
~— lest 7 results:
Test duration (seconds): 10.0
Task Pericd Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80

Kilo-Whets Requested Workload
per second Utilization

64.00 1.43 %
64.00 1.43 &
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
704.00 15.73 %

Miased Skipped Average

Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

] 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 8 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per periocd
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8
10 8.00 8
11 8.00 8
12 g8.00 8
Experiment step size: 1.43 %
Test 8 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4q 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11. 125.000 80
12 125.000 80

Kilo-Whets Requested Workload
per second Utilization

64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 &
64.00 1.43 %
64.00 1.43 %
64.00 1.43 &
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
768.00 17.16 %

Missed Skipped Average

Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 9 characteristica:

Task
No.

W oo ds WP

10

12
13

Test 9 results:

Test duration

Task
No.

1
2
3
4
5
6
7
8
9
10
11
12
13

Frequency Kilo-Whets
(Hertz) per period
2.00 32
4.00 16
8.00 8
16.00 4
32.00 2
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
1.43 %
(seconds): 10.0
Period Met
in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 320
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80

Kilo-Whets
per second
64.
64.
64.
64.
.00
64.
64.

64

Missed

00
00
00
00

00
00

Deadlines

(oo oo NoNoNeNeNoNeoNoNoNe!

Requested Workload
Utilization
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
18.59 %
Skipped Average
Deadlines Late (msec)
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0

.000

Experiment: EXPERIMENT 4 e

Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28
Test 10 characteristics:

Task Frequency Kilo~Whets Kilo-wWhets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 1.43 %
2 4,00 16 64.00 1.43 %
3 8.00 8 64.00 1.43 %
4 16.00 4 64.00 1.43 %
5 32.00 2 64.00 1.43 %
6 8.00 8 64.00 1.43 %
7 8.00 8 64.00 1.43 %
8 8.00 8 64.00 1.43 %
9 8.00 8 64.00 1.43 %

10 8.00 8 64.00 1.43 %

11 8.00 8 64.00 1.43 %

12 8.00 8 64.00 1.43 %

13 8.00 8 64.00 1.43 %

14 8.00 8 64.00 1.43 %

896.00 20.02 %
Experiment 3step size: 1.43 %

- ———— T — — ——— ———— . o - - - - ———— ——— T Y . - . - = - —— —— ————— o —_ T -

Test 10 results:

Test duration (seconds): 10.0

Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000

2 250.000 40 0 0 0.000

3 125.000 80 0 0 0.000

4 62.500 160 0 0 0.000

5 31.250 320 0 0 0.000

6 125.000 80 0 0 0.000

7 125.000 80 0 0 0.000

8 125.000 80 0 0 0.000

9 125.000 80 0 0 0.000

10 125.000 80 0 0 0.000

11 125.000 80 0 0 0.000

12 125.000 80 0 0 0.000

13 125.000 80 0 0 0.000

14 125.000 80 0 0 0.000

™

Experiment :

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 11 characteristics:

Task
No.

W o doads Wwho e

10
11
12
13
14
15

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Test 11 results:

Test duration

Task
No.
1

2
3
4
5
6
7
8

9
10
11
12
13
14
15

Frequency Kilo-Whets
(Hertz) per period
2.00 32
4.00 16
8.00 8
16.00 4
32.00 2
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
1.43 %
(seconds): 10.0
Period Met
in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 320
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80

Missed
Deadlines

SReRe=NeoNoNoNoRoNoNoRoRe e Ne)

Requested Workload
Utilization
1.43 §
1.43 %
1.43 §
1.43 %
1.43 &%
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 &%
1.43 %
1.43 &
1.43 %
21.45 %
Skipped Average
Deadlines Late (msec)
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

Experiment :

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS):

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 12 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8
10 8.00 8
11 8.00 8
12 8.00 8
13 8.00 8
14 8.00 8
15 8.00 8
16 8.00 8
Experiment step size: 1.43 %
Test 12 results:
Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80

Kilo~-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

C OO0 COOOOOOCOOO

Requested Workload
Utilization
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 &
1.43 %
1.43 %
1.43 %
1.43 %
1.43 §
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
22.88 %
Skipped Average
Deadlines Late (msec)
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 g.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

4476.28

T

Experiment:

EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 13 characteristics:

Task
No.

-
OWOJA W H WN -

11
12
13
14
15
16
17

—

Experiment step size:

Test 13 results:

Test duration

Task
No.

Frequency Kilo-~Whets
(Hertz) per period

2.00 32
4.00 16
8.00 8
16.00 4
32.00 2
8.00 8
8.00 8
8.00 8
8.00 8
B8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8
8.00 8

1.43 %

(seconds): 10.0
Period Met

in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 320
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Missed
Deadlines

CO DOV OOOOCOOOOoOODOOC O

Requested Workload
Utilization
1.43 §
1.43 %
1.43 &%
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
1.43 %
24.31 %
Skipped Average
Deadlines Late (msec)
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000
0 0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 14 characteristics:

Task Frequency Kilo-Whets
No. (Hertz) per period
1 2.00 32
2 4.00 16
3 8.00 8
4 16.00 4
5 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8
10 8.00 8
11 8.00 8
12 8.00 8
13 8.00 8
14 8.00 8
15 8.00 8
16 8.00 8
17 8.00 8
18 8.00 8
Experiment step size: 1.43 %
Test 14 results:
Test duration {(seconds): 10.0
Task Period Met
No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80

Kilo-Whets Requested Workload
per second Utilization

64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 §
64.00 1.43 &
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 &
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
64.00 1.43 %
1152.00 25.74 %

Missed Skipped Average

Deadlines Deadlines Late (msec)

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 o] 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

0 0 0.000

Experiment :

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 15 characteristics:

Task
No.

—
COUDMAIATUM e WN

11
12
13
14
15
16
17
18
19

Frequency
(Hertz)

2.

4,

8.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

[
)}

[
GO0 MOomE@ODaOE®EMO®E® N

00
00
00

Kilo-Whets Kilo-Whets
per period per second

32 64.

16 64.
64.
.00
.00
64.
.00
.00
64.
.00
.00
64.

64
64

64
64

64
64

64
64
64
64

oo maoeomOoEE®OMmOEOEN & ®

00
00
00

00

00

00

.00
.00
.00
.00
.00
.00
.00

Requested Workload
Utilization
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

P GO P O P N O O P P K I K I O WP N I N

Test 15 results:

Test duration

Task
No.

[y
O WIS W

11
12
13
14
1s
16
17
i8
19

(seconds): 10.0
Period Met

in msecs Deadlines
500.000 20
250.000 40
125.000 80
62.500 160
31.250 318
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80

Missed
Deadlines

OOOOOOOOOOOOOOHOOOO

Skipped

Deadlines

COO0O0OO00O0OO0OO0COOOOOHOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
10.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 16 characteristics:

Task
No.

f
O W U b WP

11
12
13
14
15
16
17
18
139
20

Frequency
(Hertz)

.00

.00

2
4

8.
16.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

w
N

O DODDOODDODDODMODD® ® O @O

00
00

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

O@DMD@DODODODDD@ODOD®O®OEODO®N S O

Requested Workload
Utilization
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

I e e I e e e e S Y = = N T Sty

OGP 0P P 0 IO I OP I I I I P N N N I I I P N

Test 16 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80

Missed
Deadlines

OO0 OO0OO0OO0COOO0OO0OO0OO0O0DOOOO

Skipped
Deadlines

COOOOOOOODOOCOOOOOOOOOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

S

Experiment:

Raw speed in Kilo-wWhetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 17 characteristics:

Task
No.

OO JAWUMbs W

10
11
12
13
14
15
16
17
18
19

‘# 20

21

Frequency
(Hertz)
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

2
4
8

=
(=)

W
00 Q0 00 o0 O CO O OO0 OO OB GO A QO M N
LI S T

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

0O Q0 0O o 00 DD OMAOEM®®O®O®DEN & ©

Requested Workload
Utilization

1.43

1.43

1.43

1.43

1.43
.43
.43
.43
1.43
1.43
1.43
1.43
1.43
1.43
.43
1.43
1.43
1.43
1.43
1
1

[y

[

.43
.43

wapwwwwwwwwwdpwa\owmﬂdpwo&ww

Test 17 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 318
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80

Missed
Deadlines

CO0OOCO0OCO0OO0OOODOOO0OOOOOHOOOCOo

Skipped
Deadlines

COO0O0O0OO0OOO0OOOCOOOLDOOKHOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
4.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment :

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 18 characteristics:

Task
No.

-
CWOwWDm~JoO U & WK

11
12
13
14
15
16
17
18
19
20
21
22

Frequency
(Hertz)
2.

4
8

—
N

(%)
@ o oo o o MmO ®DN
Y I

g0

.00
.00
.00
.00
.00
.00

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
€4.00
64.00
64.00

0O Q0 G O 0o OOMO MMM & D

Requested Workload
Utilization
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

O O P P P N P P O O O P O O O K I P R N P P

Test 18 results:

Test duration (seconds): 10.0 P
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)

1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
S 31.250 320 0 0 0.000
6 125.000 80 0 0 0.000
7 125.000 80 0 0 0.000
8 125.000 80 0 0 0.000
9 125.000 80 0 0 0.000
10 125.000 80 0 0 0.000
11 125.000 80 0 0 0.000
12 125.000 80 0 0 0.000
13 125.000 80 0 0 0.000
14 125.000 80 0 0 0.000
15 125.000 80 0 0 0.000
16 125.000 80 0 0 0.000
17 125.000 80 0 0 0.000
18 125.000 80 0 0 0.000
19 125.000 80 0 0 0.000
20 125.000 80 0 0 0.000
21 125.000 80 0 0 0.000
22 125.000 BO 0 0 0.000

Experiment:

EXPERIMENT_ 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 19 characteristics:

Task
No.

—
COwoo@~Jdo e whH

11
12
13
14
15
16
17
18
19
20
21
22
23

Frequency
(Hertz)
2.00
4.00
8.00
16.00
32.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00

Kilo-Whets Kilo-Whets
per period per second

32 64.

16 64.
64.
64.
.00

64

64
64
64

64
64

Q0 00 00O O O W WW®WWOOmWOoOoWo®EN&®

64.
64.
64.
64.
64.
64.
64.
.00
64.
.00
.00
64.
64.
.00
.00
.00
.00

00
00
00
00

00
00
00
00
00
00
00

00

00
00

Requested Workload
Utilization
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

O 0P O 00 O OP 0 O 0 A O P dP OF O I 0 P P O° o o of

Test 19 results:

Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines

1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 318
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125,000 80
23 125.000 80

Missed
Deadlines

OO O OO OO OO0 OLOOLODOODOHODOOO

Skipped
Deadlines

QOO0 QOO OO0 O0OCO0DO0OO0OQCOOHOOOCO

Average
Late (msec)
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

QCOO0OO0OCOOOOO0OOOODODODOOOODO0OO~NOOOO

Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28
Test 20 characteristics:

Task Frequency Kilo-Whets Kilo-wWhets Requested Workload

No. (Hertz) per period per second Utilization
1 2.00 32 64.00 1.43 %
2 4.00 16 64.00 1.43 %
3 8.00 8 64.00 1.43 %
4 16.00 4 64.00 1.43 &
5 32.00 2 64.00 1.43 3
6 8.00 8 64.00 1.43 &%
7 8.00 8 64.00 1.43 %
8 8.00 8 64.00 1.43 %
9 8.00 8 64.00 1.43 %

10 8.00 8 64.00 1.43 %

11 8.00 8 64.00 1.43 %

12 8.00 8 64.00 1.43 %

13 8.00 8 64.00 1.43 &

14 8.00 8 64.00 1.43 &%

15 8.00 8 64.00 1.43 %

16 8.00 8 64.00 1.43 %

17 8.00 8 64.00 1.43 %

18 8.00 8 64.00 1.43 %

19 8.00 8 64.00 1.43 &

20 8.00 8 64.00 1.43 &

21 8.00 8 64.00 1.43 %

22 8.00 8 64.00 1.43 %

23 8.00 8 64.00 1.43 &

24 8.00 8 64.00 1.43 %

1536.00 34.31 %

Test 20 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
S 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80

Missed
Deadlines

OOOOOOOOOOOOOOQOOOOOOOOO

Skipped
Deadlines

OOOOOOOOOOOOOOOOOOOOOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

—

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 21 characteristics:

Task
No.

[y
COUXIRARUL S WN

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Frequency
(Hertz)

2.00
4.00
8.00
16.00
32.00
8.00
8.00
8.00
8.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

G Q0 0 o O OOmamWMIUMOMDO®WO®PDOMP

Kilo~-Whets Kilo-Whets
per pericd per second

32 64.

16 64.
64.
64.
64.
64.
64.
.00
64.
64.
64.
64.
.00
.00
64.
64.
64.
64.
64,
64.
64.
64.

64

64
64

mmmmmmmmmmmmmmmmmmmmwnm

00
00
00
0o
00
00
00

00
00
0¢C
00

Requested Workload
Utilization

1.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

el el e T
OF P P P 0P O P N IO N WP I IO NP P P IO N I P P P P P O

Ll N R S P

Test 21 results:

Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines

1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 318
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 80

Missed

Deadlines

OOOOOOOOOOOOOOOOOOOOHOOOO

Skipped

Deadlines

OOOOOOOOOOCOOOOOOOOO’—‘OOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
18.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 22 characteristics:

Task
No.

=
OWwo-JO U & WhN R

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Frequency
(Hertz)
2.00
4.00
8.00
16.00
32.00
8.00
8.00
8.00
8.00
8§.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

GO 00 0O O OO D MO®E0®OEMOMOMDAN & @

Requested Workload
Utilization
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

Ll e e e e e ol N o o S G U

0 O GO I I N N M I I NI P I IR K K O N K I N

Test 22 results:

Test duration (seconds): 10.0

Task
No.

W oo W

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

Period
in msecs
500.000
250.000
125.000

62.500

31.250
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000

Met
Deadlines
20
40
80
160
320
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80

Missed
Deadlines

OO0 O0OOCOOOCOOOOOOOLOOODOODO0OOCOOO

Skipped
Deadlines

OO0 OCOOOOO0DO0O0OOCOOO0OO0ODO0ODO0O0OCOCO

Average

Late

(msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 23 characteristics:

Task Frequency

No. (Hertz)
1 2.00
2 4.00
3 8.00
4 16.00
5 32.00
6 8.00
7 8.00
8 8.00
9 8.00

10 8.00

11 8.00

12 8.00

13 8.00

14 8.00

15 8.00

16 8.00

17 8.00

18 8.00

19 8.00

20 8.00

21 8.00

22 8.00

23 8.00

24 8.00

25 8.00

26 8.00

27 8.00

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

cocnoooccommmmmmmmmmmmmmmmmmbm

Requested Workload
Utilization
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

u\°dPo\°dPM&*&W&W&aﬂrﬂww&w&o\owdp&&##&

Test 23 results:

Test duration (seconds): 10.0

Task
No.

Period
in msecs
500.000
250.000
125.000

62.500

31.250
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000

Met
Deadlines
20
40
80
160
320
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80

Missed
Deadlines

C OO0 COO0ODODO00DODOOOODOCO0OOOOOO

Skipped
Deadlines

CO0O00O0O0COOO0OOODODOODOOLDOOOOOOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Test 24 characteristics:

Task
No.

W DDA WP

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Frequency
(Hertz)

2.

4.

8.
16.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

w
[N}

CDCD(DCD(DG)CDCD(D@@(D@CD@(DG)G)(DCDCD(D(D

00
00
00
00

Kilo-Whets
per period

64
64
64

64

64

64
64

oooommoooommmmoommmcomoomcomcooomw.bm

64.
64.
.00
64.
64.
64.
64.
64.
64.
.00
64.
64.
64.

Kilo-Whets
per second
32 64.
16 64.
.00
.00
.00

00
00

00
00

00
00
00
00
0o
00

00
00
00

.00
.00
64.
64.
64.
64.
64.
.00
.00
.00

00
00
00
00
00

Requested Workload
Utilization

Ll I o RS R SR SR SR S)

Ll e e N i ol o T U SN

.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

o\°dPo\°o\°a\°o\°dPwwwwwwwwdﬂwwwdﬂdp&o\odﬂw*w#

Test 24 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125,000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 80
26 125.000 80
27 125.000 80
28 125.000 80

Missed
Deadlines

[cNoNoYoRoRoNoNoRoNoNeNaloNoNeoNoNeNoNoNo ool oo ol e

Skipped
Deadlines

COO0OO0OO0O0OOCCOO0OOOCOOOOCLOOODOOOODOOOOO0O

Average
Late (msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 25 characteristics:

Task Frequency Kilo-Whets Kilo-Whets

No. (Hertz) per period per second
1 2.00 32 64.00
2 4.00 16 64.00
3 8.00 8 64.00
4 16.00 4 64.00
5 32.00 2 64.00
6 8.00 8 64.00
7 8.00 8 64.00
8 8.00 8 64.00
9 8.00 8 64.00

10 8.00 8 64.00

11 8.00 8 64.00

12 8.00 8 64.00

13 8.00 8 64.00

14 8.00 8 64.00

15 8.00 8 64.00

16 8.00 8 64.00

17 8.00 8 64.00

18 8.00 8 64.00

19 8.00 8 64.00

20 8.00 8 64.00

21 8.00 8 64.00

22 8.00 8 64.00

23 8.00 8 64.00

24 8.00 8 64.00

25 8.00 8 64.00

26 8.00 8 64.00

27 8.00 8 64.00

28 8.00 8 64.00

29 8§.00 8 64.00

1856.00

Requested Workload
Utilization

1.43

1.43

1.43

1.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

OF dP 0 0 O P P I N P O P I P I W N P 0P OF OP IO P P P P P P

Il e e e e o e R e o S T Sy iy I ORI WP RN

Test 25 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125,000 80
26 125.000 80
27 125.000 80
28 125.000 80
29 125.000 80

Missed
Deadlines

COOCOCOOODOOOLOOO0DO0DOO0OO0OO0DO0OOOO0OO0ODOODO0OOOOO

Skipped
Deadlines

COOOO0OOOOOCOODOOCOODO0OOLOCOOCOOOOOOODO0DOOO0OO0O

Average
Late (msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

——

Experiment :

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS) : 4476.28

Test 26 characteristics:

Task
No.

[y
O W OdoO U & WK

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Frequency
(Hertz)

2.00
4.00
8.00
16.00
32,00
8.00
8.00
8.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

0O 0O MmMOMOoT Mo ®MDMO™MWOEE®O®MEW®E®D®DP® D

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

cocooocnoomwmmmmmwmmmmmmmmmmmwmom

Requested Workload
Utilization

1.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
43
.43
.43
.43
.43
.43
.43
43
.43
.43
.43
.43
.43
.43
.43
.43

.

HEHEBPREERPERBRRBRRPPBRRRRB B B B e e e
P 0P 0P P R P 0P 0P OP O N I P P O P OC P IO P IO P OO OF O P P OO IO O

Test 26 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
S 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 80
26 125.000 80
27 125.000 80
28 125.000 80
29 125.000 80
30 125.000 80

Missed
Deadlines

[eNeReoNeNoNoNaNoNoNoNoNoNoNeNeoNeNoNoNoRo oo joololoolololNo

Skipped
Deadlines

COQOO0OO0OQCOOOO0OOODO0OODOOCOCCODOODOODO0OOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 27 characteristics:

Task
No.
1

2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Frequency
(Hertz)

2.00
4.00
8.00
16.00
32.00
8.00
8.00
8.00
8.00
.00
.00
.00

mmmmmmmmmmmmmmmmmmmmmm
S T A T S

o

o

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

oooom(:ooommmmmmwmmwmmmmmmmmmmmmpm

Requested Workload
Utilization

1.43

1.43
.43
.43
.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

-

a\ndpwwdpdnwo\owmwwwdowmwwmwwapwwdpwwmwdpdﬂ

Ll e el S e S e S S N

Test 27 results:

Test duration

Task
No.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

Period
in msecs
500.000
250.000
125.000
62.500
31.250
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000
125.000

(seconds): 10.0

Met
Deadlines
20
40
80
160
320
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
80
B8O
BO
80
80
80
80
80
80
80
80

Missed
Deadlines

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Skipped
Deadlines

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

OOOOOOOOOOOOOOOOOOOOOOOOOQO

Experiment: EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 28 characteristics:

Task Frequency

No. (Hertz)
1 2.00
2 4.00
3 8.00
4 16.00
S 32.00
6 8.00
7 8.00
8 8.00
9 8.00

10 8.00

11 8.00

12 8.00

13 8.00

14 8.00

15 8.00

16 8.00

17 8.00

18 8.00

19 8.00

20 8.00

21 8.00

22 8.00

23 8.00

24 8.00

25 8.00

2 8.00

27 8.00

28 8.00

29 8.00

30 8.00

31 8.00

32 8.00

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

oocnooa:mmmmmmmmmmmmmwmmmmmmmmmm.&w

Requested Workload
Utilization

el e e e e = o N Ty e N

b b b b s

.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

d°o\ﬂdPt#’de°dPdePoPde’*d"dﬂ&tﬂ&dﬂd’&d’dpd’dﬂoﬁdﬂdprpdﬂwdﬂ

Test 28 results:

Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines

1 500.000 20
2 250.000 40
3 125.000 78
4 62.500 160
5 31.250 318
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 78
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 78
16 125.000 80
17 125.000 78
18 125.000 80
19 125.000 80
20 125.000 78
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 80
26 125.000 80
27 125.000 80
28 125.000 80
29 125.000 80
30 125.000 80
31 125.000 80
32 125.000 80

Missed
Deadlines

COO0OCOO0OO0O0OOCOOHOOHOHROOOOHROOOOKHOHOO

Skipped
Deadlines

C OO0 000000 O0OOHOOFROHOOOOROOOOHOR OO

Average
Late (msec)
0.000
0.000
22.000
0.000
16.000
0.000
0.000
0.000
0.000
25.000
0.000
0.000
0.000
0.000
27.000
0.000
30.000
0.000
g.000
11.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment:

EXPERIMENT 4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 29 characteristics:

Task
No.

—
O WOV Wk

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

Frequency
(Hertz)

2.00
4.00
8.00
16.00
32.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
8.00
.00
.00
.00
.00

moocncommcommmmcococnmmmoommmma:

w owowm

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

oomoocomcooooomcoa:cnmmoomcnmmoommmmcoooaamm.hw

Requested Workload
Utilization

1.43

1.43
.43
.43
.43
.43
.43
.43
.43
.43
-43
.43
.43
.43
.43
.43
.43
.43
.43
.43

it ol ol e e T e N T S ORI
. . .

d"d"o\odﬂwdﬂdePdePdeﬂdeﬂW&&wdﬂ#&w#w&*@&#dﬁ*&dﬂ

Ll e Sy
C e s e . . .
e
W

Test 29 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
S 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 80
26 125.000 80
27 125.000 80
28 125.000 80
29 125.000 80
30 125.000 80
31 125.000 80
32 125.000 80
33 125.000 80

Missed
Deadlines

OOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOO

Skipped
Deadlines

OOOOOOOOOOOQOOOOOOOOOOOOOOOOOOOOO

Average

Late

(msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

o

Experiment:

EXPERIMENT_4

Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 30 characteristics:

Task
No.

O oJdabd WP

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
1
32
33
34

Frequency
(Hertz)
2.00
4.00
8.00
16.00
32.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00
8.00

Kilo-wWhets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
€4.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

mmcommcooocommcoa:commoommmcnmmmcncommmmm.um

Requested Workload
Utilization
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

dﬂdpdﬂdﬂ#dﬂw#dﬂ&#W&W&w*&&&w&w*#w&wdﬂw&aP&dP

Test 30 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
S 31.250 318
6 125.000 78
7 125.000 78
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 78
17 125.000 80
18 125.000 80
19 125.000 78
20 125.000 78
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 78
26 125.000 78
27 125.000 78
28 125.000 80
29 125.000 80
30 125.000 80
31 125.000 80
32 125.000 80
33 125.000 80
34 125.000 80

Missed
Deadlines

OOOOOOOHHO—‘OOOOHP—‘OOHOOOOOOOOHHHOOOO

Skipped
Deadlines

OQOOOOOHHHOOOOHHOOHOOOOOOOOHI—‘HOOOO

Average
Late (msec)

0.000
0.000
0.000
0.000
5.000
11.000
96.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
30.000
0.000
0.000
27.000
15.000
0.000
0.000
0.000
0.000
24.000
18.000
21.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment: EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 31 characteristics:

Task Frequency Kilo-wWhets Kilo~Whets

No. (Hertz) per period per second
1 2.00 32 64.00
2 4.00 16 64.00
3 8.00 8 64.00
4 16.00 4 64.00
5 32.00 2 64.00
6 8§.00 8 64.00
7 8.00 8 64.00
8 8.00 8 64.00
9 8.00 8 64.00

10 8.00 8 64.00

11 8.00 8 64.00

12 8.00 8 64.00

13 8.00 8 64.00

14 8.00 8 64.00

15 8.00 8 64.00

16 §.00 8 64.00

17 8.00 8 64.00

18 8.00 8 64.00

19 8.00 8 64.00

20 8.00 8 64.00

21 8.00 8 64.00

22 8.00 8 64.00

23 8.00 8 64.00

24 8.00 8 64.00

25 8.00 8 64.00

26 8.00 8 64.00

27 8.00 8 64.00

28 8.00 8 64.00

29 §.00 8 64.00

30 8.00 8 64.00

31 8.00 8 64.00

32 8.00 8 64.00

33 8.00 8 64.00

34 8.00 8 64.00

35 8.00 8 64.00

2240.00
Experiment step size: 1.43 %

Requested Workload
Utilization
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

dPaﬁdeﬂdPﬂ\ﬂ&#dP#&#wwwwwwwd’d’d’w*#*w#tﬂ&&#*tﬂ’#

Test 31 results:

Test duration (seconds): 10.0
Task Period Met
No. in msecs Deadlines

1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 80
26 125.000 80
27 125.000 80
28 125.000 80
29 125.000 80
30 125.000 80
31 125.000 80
32 125.000 80
33 125.000 80
34 125.000 80
35 125.000 80

Missed
Deadlines

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Skipped
Deadlines

OOOOOOOOOOOOOOOOOOOOQOOOOOOOOOOQOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Test 32 characteristics:

Task
No.

W oodoynUts W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

Frequency
(Hertz)

2.

4.

8.
16.
32.
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00
.00

mmmmmmmmmmmmmmmmwmmmmmmmwmmmmmm

00
00
00
00
00

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

oooocnoococooocx:mooa::mmmmmmmmmmmwmmmmmmmwmam

Requested Workload
Utilization

1.43

1.43

1.43

1.43

1.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

B s e s

uPo\ﬂdePdeFdFdﬂdﬂdﬂd"dﬂdﬂu\"d"d"dpwwdﬂ&&w&*&dﬂdﬂdﬁdpw&dﬂ#*dp

PHEEEPEPRRRBPBRP B HEERBRP R R e

Test 32 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 318
6 125.000 78
7 125.000 80
8 125.000 80
9 125.000 78
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 78
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 78
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 78
25 125.000 80
26 125.000 80
27 125.000 78
28 125.000 78
29 125.000 80
30 125.000 80
31 125.000 80
32 125.000 78
33 125.000 80
34 125.000 78
35 125.000 80
36 125.000 80

Missed
Deadlines

OOHOF—‘OOOH}—‘OOHOOOHOOOOHOOOOOHOOD—'HOOOO

Skipped
Deadlines

OOHOHOOC)l—‘l—‘OOHOOOHOOOOHOOOOOHOOHHOOOO

Average
Late (msec)
0.000
0.000
0.000
0.000
15.000
33.000
0.000
0.000
120.000
0.000
0.000
0.000
0.000
0.000
35.000
0.000
0.000
0.000
0.000
23.000
0.000
0.000
0.000
39.000
0.000
0.000
29.000
20.000
0.000
0.000
0.000
26.000
0.000
2.000
0.000
0.000

. ~

Experiment: EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 33 characteristics:

Task Frequency

No. (Hertz)
1 2.00
2 4.00
3 8.00
4 16.00
5 32.00
6 8.00
7 8.00
8 8.00
9 8.00

10 8.00

11 8.00

12 8.00

13 8.00

14 8.00

15 8.00

16 8.00

17 8.00

18 8.00

19 8.00

20 8.00

21 8.00

22 8.00

23 8.00

24 8.00

25 8.00

26 8.00

27 8.00

28 8.00

29 8.00

30 8.00

31 8.00

32 8.00

33 8.00

34 8.00

35 8.00

36 8.00

37 8.00

Kilo-Whets Kilo-Whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

oomoocncococomoocnmmmmmmmmmmmwmmmwmmmmmmwhm

Requested Workload
Utilization

1.43

1.43

1.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

I e e o T ey
O R dP P G G I P P P I P IO R 0P OO P P P OO 0P P P IO O O I P IR P P P P I N P N

Ll el el e e e o L iy e SN

Test 33 results:

Test duration (seconds): 1.0.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
5 31.250 320
6 125.000 80
7 125.000 80
8 125.000 80
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 80
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 80
26 125.000 80
27 125.000 80
28 125.000 80
29 125.000 80
30 125.000 80
31 125.000 80
32 125.000 80
33 125.000 80
34 125.000 80
35 125.000 80
36 125.000 80
37 125.000 80

Missed
Deadlines

CO0O0OCOO0OO0OODOO0OO0O0OODOOOOOOOOO0ODODOODOOODOOOCOOOO

Skipped
Deadlines

COO0OCOO0OCOOODODOOO0OOOOOOLODOODODODOODODOODOCOOOOOO

Average

Late (msec)
.000
.000
.000
.000

COO0OOODOOOCOLOOOOOOOOOODOOOOOOOCOODODOOOOOO

000

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

Experiment:

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Test 34 characteristics:

Task
No.

-
CWOWEOINAUH WN -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

Frequency
(Hertz)

2.

4.

8.

—
<2}
.

W
coaammcocooooocncoa:ommmmmmmcommmmwmmmoooommmmm
L T T . e « e T T LI

Kilo-Whets Kilo-whets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

coooonoocooooococooommmmmmmwmmmwmmmmwmmmmmmN.hm

Requested Workload
Utilization

[l e e e N ol ol =) Ty RN

ol el B R e e S R Y

.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

Test 34 results:

Test duration (seconds): 10.0

Task
No.

Period
in msecs

500.
250.
125.

62
31

125
125
125
125

125
125

125

125

125

000
000
000

.500
.250
125.
125.
.000
.000
.000
.000
125.
125.
125.
.000
.000
125.
125.
125.
125.
125.
125.
125.
125.
125.
125.
.000
125.

000
000

000
000
000

000
000
000
000
000
000
goo
000
000
000

000

.000
125.
125.
125.
125.
125.

000
000
600
000
000

.000
125.
125.
125.

000
000
000

Met
Deadlines
20
38
78
160
318
80
80
78
78
78
80
78
78
78
80
80
80
80
80
80
80
78
80
80
80
80
80
80
80
78
78
78
78
78
80
80
80
80

Missed
Deadlines

OOOOH!—'HHHOOOOOOOHOOOOOOOHHHOHHHOOHOHHO

Skipped
Deadlines

OOOOI—‘HHHHOOOOOOOHOOOOOOOHHHOHHHOOHOHHO

Average
Late (msec)

0.000
127.000
1.000
0.000
7.000
0.000
0.000
31.000
8.000
38.000
0.000
21.000
2.000
35.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
46.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
18.000
43.000
27.000
5.000
24.000
0.000
0.000
0.000
0.000

Experiment :

EXPERIMENT_ 4
Completion on: Miss/skip 50 deadlines

Raw apeed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Tesat 35 characteristics:

Task
No.

—
O W O~JIAN WU WN -

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

Frequency
(Hertz)
2.

00

Kilo-Whets Kilo-Whets
per period per second

32 64.
.00
64.
64.
64.
64.
64.
.00
64.
64.
.00

16 64

64

64

64
64

64
64

64
64

G 0O oo o 00 M o 0o A M O 0 0 M N & o

64.
.00
.00
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
64.
.00
.00
64.
64.
64.
64.
64.
.00
.00
64.
.00
.00
.00

00

00
00
00
00
00

00
00

00

00
00
00
00
00
00
00
00
00
00
00
00

00
00
0o
00
00

00

Requested Workload
Utilization
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

OF OP P dP I NN O P O N P O P OO O O O OP 0P O OP O 0P O I N P P O 0P P P O P OO P O

Test 35 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 20
2 250.000 40
3 125.000 80
4 62.500 160
S 31.250 320
6 125.000 80
7 125.000 80
8 125.000 78
9 125.000 80
10 125.000 80
11 125.000 80
12 125.000 80
13 125.000 80
14 125.000 80
15 125.000 80
16 125.000 80
17 125.000 80
18 125.000 78
19 125.000 80
20 125.000 80
21 125.000 80
22 125.000 80
23 125.000 80
24 125.000 80
25 125.000 80
26 125.000 80
27 125.000 78
28 125.000 78
29 125.000 80
30 125.000 78
31 125.000 80
32 125.000 80
33 125.000 80
34 125.000 80
35 125.000 80
36 125.000 80
37 125.000 80
38 125.000 80
39 125.000 80

Missed
Deadlines

CO0OO0OO00COO0OHOHHFFOOODOOOOOHOOODODOODOOOKFFOOOODODODOO

Skipped
Deadlines

COO0OQOOOQCOFOMMEMOOOODOOOOHFPOOOODODOOOQOOHOODODOOOO

Average

Late (msec)

COOOOOOOONONNOOOCODOOOCOOHOOOOOOOODOONODODOOOOO

.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

Experiment:

EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo

-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 36 characteristics:

Task Frequency Kilo-whets

No. (Hertz) per period
1 2.00 32
2 4,00 16
3 8.00 8
4 16.00 4
S 32.00 2
6 8.00 8
7 8.00 8
8 8.00 8
9 8.00 8

10 8.00 8

11 8.00 8

12 8.00 8

13 8.00 8

14 8.00 8

15 8.00 8

16 8.00 8

17 8.00 8

18 8.00 8

19 8.00 8

20 8.00 8

21 8.00 8

22 8.00 8

23 8.00 8

24 8.00 8

25 8.00 8

26 8.00 8

27 8.00 8

28 8.00 8

29 8.00 8

30 8§.00 8

31 8.00 8

32 8.00 8

33 8.00 8

34 8.00 8

35 8.00 8

36 8.00 8

37 8.00 8

38 8.00 8

39 8.00 8

40 8.00 8

Experiment step size: 1.43 %

Kilo-Whets
per second
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

Requested Workload
Utilization

1.

1.

1.
.43
1.43
1.43
1.43
1.43
1.
1
1
1
1
1

1

HHHHHHHHD—'HI—‘HHHHHHHHHD—‘HHD—‘HH

43
43
43

43

.43
.43
.43
-43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

$
%
¥
%
%
3
%
3%
%
%
%
%
%
$

w#&d@#&w&dpwwwww&dﬂdﬁdﬂwwdotﬂMdeodo

Test 36 results:

Test duration (seconds): 10.0
Task Period Met

No. in msecs Deadlines
1 500.000 16
2 250.000 32
3 125.000 80
4 62.500 160
5 31.250 318
6 125.000 78
7 125.000 80
8 125.000 78
9 125.000 78
10 125.000 78
11 125.000 80
12 125.000 76
13 125.000 76
14 125.000 76
15 125.000 76
16 125.000 78
17 125.000 78
18 125.000 78
19 125.000 78
20 125.000 78
21 125.000 80
22 125.000 78
23 125.000 78
24 125.000 78
25 125.000 80
26 125.000 76
27 125.000 80
28 125.000 78
29 125.000 78
30 125.000 78
31 125.000 78
32 125.000 80
33 125.000 76
34 125.000 78
35 125.000 78
36 125.000 78
37 125.000 74
38 125.000 78
39 125.000 80
40 125.000 78

Missed
Deadlines
2

4
0
0
1
1
0
1
1
1
0
2
2
2
2
1
1
1
1
1
0
1
1
1
0
2
0
1
1
1
1
0
2
1
1
1
3
1
0
1

Skipped
Deadlines
2

4
0
0
1
1
0
1
1
1
0
2
2
2
2
1
1
1
1
1
0
1
1
1
0
2
0
1
1
1
1
0
2
1
1
1
3
1
0
1

Average
Late (msec)
250.000

1.500
0.000
0.000
11.000
4.000
0.000
31.000
37.000
12.000
0.000
60.500
22.000
115.000
1.000
1.000
1.000
112.000
123.000
1.000
0.000
15.000
111.000
53.000
0.000
1.500
0.000
44,000
56.000
47.000
50.000
0.000
12.500
5.000
1.000
27.000
7.000
21.000
0.000
1.000

HARTSTONE BENCHMARK SUMMARY RESULTS

Baseline test:

Experiment: EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28
Test 1 characteristics:

Task Frequency Kilo-Whets Kilo-Whets Requested Workload

No. (Hertz) per period per second Utilization

1 2.00 32 64.00 1.43 %
2 4.00 16 64.00 1.43 %
3 8.00 8 64.00 1.43 &
4 16.00 4 64.00 1.43 %
5 32.00 2 64.00 1.43 %

320.00 7.15 %

Experiment step size: 1.43 %

Test 1 results:

T Test duration (seconds): 10.0
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
5 31.250 320 0 0 0.000

Last test with no missed/skipped deadlines:

Experiment: EXPERIMENT_4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Tast 33 characteristics:

Task Frequency

No. (Hertz)
1 2.00
2 4.00
3 8.00
4 16.00
5 32.00
6 8.00
7 8.00
8 8.00
9 8.00

10 8.00

11 8.00

12 8.00

13 8.00

14 8.00

15 8.00

16 8.00

17 8.00

18 8.00

19 8.00

20 8.00

21 8.00

22 8.00

23 8.00

24 8.00

25 g8.00

26 8.00

27 8.00

28 8.00

29 8.00

30 8.00

31 8.00

32 8.00

33 8.00

34 8.00

35 8.00

36 8.00

37 8.00

Kilo-Whets Kilo-wWhets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

cocncowwcooocnoooomcomoocnmmmmmmmmoomcomoommmml\).b(D

Requested Workload
Utilization

1
1
1

N

e

T S I N e e ey e e il ol ol

.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43
.43

dePdePdP:Po\“dePdePdeFdFdpww#wwmdﬂdﬁw&a\ﬂ#dﬂ&dﬂ*dﬁdﬂ*ww&

T

Test 33 results:

.Test duration (seconds): 10.0

Period Met
in msecs Deadlines
500.000 20
250.000 40
125,000 80
62.500 160
31.250 320
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80
125.000 80

Missed
Deadlines

0

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOQOOOOOO

Skipped
Deadlines

0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

Average
Late (msec)

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

62

Test when deadlines first missed/skipped:

R
Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines
Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28
Test 4 characteristics:
Task Frequency Kilo~-wWhets Kilo-Whets Requested Workload
No. (Hertz) per period per second Utilization
1 2.00 32 64.00 1.43 %
2 4.00 16 64.00 1.43 %
3 8.00 8 64.00 1.43 %
4 16.00 4 64.00 1.43 %
S 32.00 2 64.00 1.43 %
6 8.00 8 64.00 1.43 %
7 8.00 8 64.00 1.43 %
8 8.00 8 64.00 1.43 %
512.00 11.44 %
Experiment step size: 1.43 %
Test 4 results:
Test duration (seconds): 10.0 —
Task Period Met Missed Skipped Average
No. in msecs Deadlines Deadlines Deadlines Late (msec)
1 500.000 20 0 0 0.000
2 250.000 40 0 0 0.000
3 125.000 80 0 0 0.000
4 62.500 160 0 0 0.000
) 31.250 318 1 1 2.000
6 125.000 80 0 0 0.000
7 125.000 80 0 0 0.000
8 125.000 80 0 0 0.000

Final test performed:

Experiment: EXPERIMENT 4
Completion on: Miss/skip 50 deadlines

Raw speed in Kilo-Whetstone Instructions Per Second (KWIPS): 4476.28

Test 36 characteristics:

Task Frequency

No. (Hertz)
1 2.00
2 4.00
3 8.00
q 16.00
5 32.00
6 8.00
7 8.00
8 8.00
9 8.00

10 8.00

11 8.00

12 8.00

13 8.00

14 8.00

15 8.00

16 8.00

17 8.00

18 8.00

19 8.00

20 8.00

21 8.00

22 8.00

23 8.00

24 8.00

25 8.00

26 8.00

27 8.00

28 8.00

29 8.00

30 8.00

31 8.00

32 8.00

33 8.00

34 8.00

35 8.00

36 8.00

37 8.00

38 8.00

39 8.00

40 8.00

Kilo-Whets Kilo-wWhets
per period per second
32 64.00
16 64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00
64.00

mooooooooooo:amccococnmoooommcooowmmmoommmmwmmmmoommwhco

Requested Workload
Utilization
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43
1.43

dePd"dePdde#d’cﬂdﬂdﬂwc#’dpdﬂdePdePdeﬂdP#wdﬂwwwwwﬂwde##&#d’

Test 36 results:

Test duration

Task
No.

(seconds): 10.

Period
in msecs

500
250
125

62

31
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
128
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125
125

.000
.000
.000
.500
.250
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000
.000

Met

0

Deadlines

16
32
80
160
318
78
80
78
78
78
80
76
76
76
76
78
78
78
78
78
80
78
78
78
80
76
80
78
78
78
78
80
76
78
78
78
74
78
80
78

Missed

Deadlines

P ORWRRENOHHREPONORKRRORERERERERINNNNOHHFEOHEOOMN N

Skipped

Deadlines

2

4
0
0
1
1
0
1
1
1
0
2
2
2
2
1
1
1
1
1
0
1
1
1
0
2
0
1
1
1
1
0
2
1
1
1
3
1
0
1

Average
Late (msec)
250.000

1.500
0.000
0.000
11.000
4.000
0.000
31.000
37.000
12.000
0.000
60.500
22.000
115.000
1.000
1.000
1.000
112.000
123.000
1.000
0.000
15.000
111.000
53.000
0.000
1.500
0.000
44.000
56.000
47.000
50.000
0.000
12.500
5.000
1.000
27.000
7.000
21.000
0.000
1.000

Benchmark : Hartstone Benchmark, version 1.0
Compiler : Verdix 6.0 -> Sun SPARC
Target : Sun SPARC Station 1+ (25 MHz) - multiuser mode

Characteristics of best test for this experiment:
{no missed/skipped deadlines)

Test 33 of Experiment 4
Raw (non-tasking) benchmark speed in KWIPS: 4476.28

Full task set:

Total Deadlines Task Set Total
Tasks Per Second Utilization KWIPS
37 318.00 52.90 % 2368.00

Highest-frequency task:

Period Deadlines Task Task

(msec) Per Second Utilization KWIPS

31.250 32.00 1.43 % 64.00
Experiment step size: 1.43 %

END OF HARTSTONE BENCHMARK SUMMARY RESULTS

